題號: 354 國立臺灣大學

國立臺灣大學 102 學年度碩士班招生考試試題

科目:熱力學與反應工程

 村日・然刀字與及應工程
 題號: 354

 節次: 4
 共 / 頁之第 / 頁

Problem 1 (10%) Describe Raout's law and Henry's law as well as their applicability and limits.

<u>Problem 2 (15%)</u> A heat engine receives heat from a source at 1200 K at a rate of 500 kJ/s, and it rejects the waste heat to a medium at 450 K. The measured power output of the heat engine is 280 kW, and the environment temperature is 25°C. Determine (a) the reversible power, (b) the rate of irreversibility, and (c) the second-law efficiency of this heat engine.

<u>Problem 3 (15%)</u> Derive a relation for the internal energy change as a gas that obeys the van der Waals equation of state. Assume that in the range of interest C_{ν} varies according to the relation, where $C_{\nu} = C_1 + C_2 T + C_3 T^2$ are constants.

<u>Problem 4 (10%)</u> One enzyme catalyzed reaction in a biochemical cycle has an equilibrium constant that is 5 times the equilibrium constant of a second reaction. If the standard Gibbs energy of the former reaction is -200 kJ mol⁻¹, what is the standard reaction Gibbs energy of the second reaction?

Problem 5 (27%)

The restriction enzyme EcoRI catalyzes the cleavage of DNA at a specific sequence of nucleotides. The reaction sequence it brings about is: supercoiled DNA (A) \rightarrow open-circle DNA (I) \rightarrow linear DNA (P). Let's suppose that the reaction takes place in two first-order steps, and the reverse reactions can be ignored.

$$A \rightarrow I$$
 $r_1 = k_a C_A$
 $I \rightarrow P$ $r_2 = k_b C_I$

- (a) Show that a common feature of all first-order reactions is that the concentration of the reactant decays exponentially with time. (5%)
- (b) Derive C_A(t), C_I(t), and C_P(t) (molar concentrations of A, I, and P at time t) using the steady-state approximation to the consecutive first-order mechanism. The initial concentration of A is C_{A0}. (12%)
- (c) Briefly describe the difference between (i) the method of initial rates and (ii) the method of integrated rate laws for determination of k_a . (6%)
- (d) Since the reaction is an enzymatic reaction, describe what main assumption is made from the aspect of Michaelis-Menten kinetics for the above discussion. (4%)

Problem 6 (23%)

The mechanism for an enzymatic reaction in the presence of a competitive inhibitor I can be described by the following reactions.

$$E+S \rightarrow ES \qquad r_1 = k_1 C_E C_S$$

$$ES \rightarrow E+S \qquad r_2 = k_2 C_{ES}$$

$$E+I \rightarrow EI \qquad r_3 = k_3 C_E C_I$$

$$EI \rightarrow E+I \qquad r_4 = k_4 C_{EI}$$

$$ES \rightarrow E+P \qquad r_5 = k_5 C_{ES}$$

where E, S, I, and P represent the enzyme, substrate, inhibitor, and product, respectively. ES and EI are the intermediate complexes.

- (a) Assume $r_1 \cong r_2$ and $r_3 \cong r_4$. Show that $1/r_5$ is linearly correlated to $1/C_8$. (8%)
- (b) If the enzyme E reduces the activation energy for the conversion of S to P from 57 kJ·mol⁻¹ to 9 kJ·mol⁻¹. This corresponds to an acceleration of the reaction by a factor of 10^N at 300 K. N =? (!Set $\log e \cong 0.43$ and R $\cong 8.0$ J·mol⁻¹·K⁻¹ for quick calculation.) (7%)
- (c) Derive the residence time (τ) for the above enzyme reaction carried out in a CSTR under the following operating conditions: the reactor volume is V; the volumetric flow rate is F; the substrate concentrations in the inlet and outlet streams are C_{S0} and C_S, respectively. (8%)

試題隨卷繳回