題號: 416

國立臺灣大學 102 學年度碩士班招生考試試題

科目:數學

節次: 4

超號: 416 共 2 頁之第 / 頁

1 Is the following argument correct or wrong? Why? (10%)

Suppose that \Re is a binary relation on a non-empty set A. If \Re is symmetric and transitive, then \Re is reflexive.

Proof. Let $(x, y) \in \Re$. By the symmetric property, we have $(y, x) \in \Re$. Then, with $(x, y), (y, x) \in \Re$, it follows by the transitive property that we have $(x, x) \in \Re$. As a consequence, \Re is reflexive.

- 2 Consider ternary strings with symbols 0, 1, 2 used. For $n \ge 1$, let a_n count the number of ternary strings of length n, where there are no consecutive 1's and no consecutive 2's. Show that a_n can be expressed recursively as $2a_{n-1} + a_{n-2}$. (10%)
- 3 Suppose that G is an undirected simple graph of n vertices. (10%)
 - (a) Find the number of spanning subgraphs of G that are also induced subgraphs of G.
 - (b) If every induced subgraph of G is connected, then find the number of edges in G.
- 4 If G is an undirected simple graph, then there are two vertices in G having equal degree.

 Why? (10%)
- Suppose that G is a group, and H, K are two subgroups of G. Prove that if gcd(|H|, |K|) = 1, then $H \cap K = \{e\}$, where e is the identity of G. (10%)
- 6 If $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are eigenvalues of matrix A:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 8 & 7 & 6 & 5 \\ 1 & 4 & 5 & 8 \\ 2 & 3 & 6 & 7 \end{bmatrix}$$

Then $\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4 =$ (5%).

- 7 If $A = SAS^{-1}$, then the eigenvalue matrix and eigenvector matrix of $B = \begin{bmatrix} 3A & 0 \\ 0 & 2A \end{bmatrix}$ are _____ and _____, respectively (5%).
- 8 Define $T(A) = \frac{A+A^T}{2}$ where A is a $n \times n$ matrix. Then
 - (a) $ker(T) = ____(5\%)$.
 - (b) (nullity(T), rank(T)) = (,) (5%).

題號: 416

國立臺灣大學 102 學年度碩士班招生考試試題

≈ № ¥10 科目:數學

節次:

共 2 頁之第 2 頁

9 Suppose that $p_k(x)$ is a polynomial of order k with leading coefficients, a_k , $k = 0, \dots, n-1$. That is, $p_k(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0, k = 0, \dots, n-1$. Then

$$\begin{vmatrix} p_0(x_1) & p_0(x_2) & \cdots & p_0(x_n) \\ p_1(x_1) & \vdots & & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ p_{n-1}(x_1) & p_{n-1}(x_2) & \cdots & p_{n-1}(x_n) \end{vmatrix} = (10\%).$$

[True or false] Credits will be given only if all the answers are correct.

- 11 (5%) Let W_1 and W_2 be subspaces of a vector space V over \mathbb{R} .
 - (a) $W_1 \cap W_2$ is a subspace of V.
 - (b) $W_1 \cup W_2$ is a subspace of V.
 - (c) $(V W_1) \cap W_2$ is a subspace of V.
 - (d) $V W_1$ is a subspace of V.
 - (e) If $W_1 \perp W_2$ then $W_1 = (W_2)^{\perp}$
- 12 (5%) Suppose that A, B \in M_{n×n}.
 - (a) A and A^T have the same eigenvalues.
 - (b) If A is diagonalizable, so is its transpose A^T.
 - (c) AB and BA have the same eigenvalues.
 - (d) If α is an eigenvalues of A and β is an eigenvalue of B, then $\alpha\beta$ must be the eigenvalue of AB.
 - (e) If A and B are both diagonalizable, so is A-B.

試題隨卷繳回