題號: 238 國立臺灣大學 102 學年度碩士班招生考試試題

科目:輸送現象及單元操作

節次: 8

題號: 238

共 3 頁之第 / 頁

Problem 1 (20 points)

Please answer the following questions:

- (a) A fully developed turbulent flow in a pipe can be roughly divided into three regions. Please give their names in the order from the wall to the center of the pipe. (3 points)
- (b) Draw the plot of Fanning fraction factor versus Re for a pipe flow. Please remark the important features in the plot. (5 points)
- (c) Please show the "Reynolds Analogy" and briefly explain how to apply this "Reynolds Analogy"? (4 points)
- (d) Please define "Thermally fully developed condition" and explain why the convective heat transfer coefficient, h, remains constant in the "thermally fully developed region". (5 points)
- (e) Please briefly explain the "Wien's Displacement Law". (3 points)

Problem 2 (20 points)

The following figure illustrates a wire coating process. The rod-like wire of radius r_1 is being steadily pulled with velocity V through a horizontal die of length L and internal radius r_2 . The wire and the die are coaxial, and the space between them is filled with an incompressible liquid with constant viscosity μ . The pressure at both ends of the die is atmospheric. You can assume $v_r=v_0=0$ and $v_z=v_z(r)$ only. Also, the flow is assumed to be hydrodynamically fully-developed.

- (a) Use shell balances to construct the governing equation. (4 points) Please indicate the physical meaning of each term (6 points)
- (b) Determine v₂ within the annular space. (5 points)
- (c) Determine the force needed to pull the wire. (5 points)

Problem 3 (20 points)

Solute A is to be extracted from a feed mixture of 30 wt% A and 70 wt% solvent (C) by a second solvent (S) using a counter-current multiple contact extraction unit. The phase diagram is given in the following figure. The final raffinate is to contain 5 wt% A on a S-free basis. (a) Determine the weight fraction of A in the final extraction and the number of equilibrium stages required if the mass ratio of solvent-to-feed ratio is

題號: 238 國立臺灣大學 102 學年度碩士班招生考試試題

科目:輸送現象及單元操作

題號: 238

節次: 8

共 3 頁之第 2 頁

1/3. (10 points) (b) There exists a maximum value for the solvent-to-feed ratio. At this ratio, only the extraction but no reffinate will be obtained. Determine this ratio. (5 points) (c) In this system, sometimes a bad choice of the solvent-to-feed ratio causes a situation that an infinite number of stages are required to reach the desired results. At which condition will this situation occur? (5 points).

Problem 4 (20 points)

You are given a concentric tube (double pipe) heat exchanger with an area of 50m² operating under the following conditions:

Description	Heat capacity rate C_p , kW/K	Inlet temperature t_i , °C	Outlet temperature to, °C
Hot fluid	6	70	
Cold fluid	3	30	60

- 1. What would be the outlet temperature of hot fluid? (4 points)
- 2. Is this heat exchanger operating in counter flow or parallel flow or cannot be determined from the information provided above? (4 points)
- 3. Please determine the overall heat-transfer coefficient. (4 points)
- 4. Please define and calculate the effectiveness of this heat exchanger. (4 points)
- 5. What would be the effectiveness of this heat exchanger if its length were greatly increased? (4 points)

題號: 238 國立臺灣大學 102 學年度碩士班招生考試試題

科目:輸送現象及單元操作

節次: 8 共 3 1

共 3 頁之第 3 頁

Problem 5 (20 points)

Consider a spherical organism of radius R within which respiration occurs at a uniform volumetric rate of $r_A = -k_1C_A$ (i.e., The consumption of oxygen (species A) is governed by a first-order, homogeneous chemical reaction). A molar concentration of $C_A(R) = C_{A,0}$ is maintained at the surface of the organism.

- (a) Use "shell balances" to construct the governing equation and list the appropriate boundary conditions for the given system. (6 points)
- (b) Please obtain an expression for the radial distribution of oxygen, C_A(r), within the organism. (5 points)
- (c) Please obtain an expression for the rate of oxygen consumption within the organism. (5 points)
- (d) Consider an organism of radius R = 0.10 mm and a diffusion coefficient for oxygen transfer of $D_{AB} = 10^{-8}$ m²/s. If $C_{A,0} = 5 \times 10^{-5}$ kmol/m³ and $k_1 = 20$ s⁻¹, what is the molar concentration of oxygen at the center of the organism? What is the rate of oxygen consumption by the organism? (4 points)

試題隨卷繳回