題號: 125 國立臺灣大學 102 學年度碩士班招生考試試題

科目:統計學(A)

節次: 4

題號: 125 共 3 頁之第 / 頁

1. (15 分) 假設台北市主計局為了解 25-30 歲年輕人就業的情形,主計局計畫每個月隨機抽取 5 個人調查其就業情形,若台北市 25-30 歲年輕人每個月的就業率為 P,每個月均不同,而為一均等分配(0,1)。

- (a).試求有 4 位就業,1 位失業的非條件機率(unconditional probability)為何?
- (b).試求 5 個人樣本的就業人數平均數。
- (c).試求 5 個人樣本的就業人數變異數。
- 2. (10 分) 設 $X_1, X_2, ... X_n$ 為抽取自平均數 μ ,變異數為 σ^2 的隨機樣本,令 $S^2 = \frac{\sum (X_1 \bar{X})^2}{n-1}, \widehat{\sigma}^2 = \frac{1}{2}(X_1 X_2)^2.$
 - (a).試問 S^2 與 6^2 為 σ^2 的不偏估計式嗎? 請證明之。
 - (b).若假設母體分配為一常態分配,請比較 S^2 與 G^2 的相對有效性。
- 3. (15 分) 某工廠有 $A \cdot B$ 兩種機器生產產品,現已知 A 機器每週的修理成本X為一常態分配平均數為 μ_1 變異數為 σ^2 , B 機器每週的修理成本Y為一常態分配平均數為 μ_2 變異數為 $2\sigma^2$ 。現工廠有兩部 A 機器及一部 B 機器,為了瞭解工廠每週之平均修理成本。自修理 A 機器的成本中抽取 $X_1, X_2, ... X_n$ 之隨機樣本,自修理 B 機器的成本中抽取 $Y_1, Y_2, ..., Y_m$ 之隨機樣本。
 - (a). 請建立工廠每週機器的平均修理成本95%的信賴區間(假設 σ^2 未知,n為小樣本)。
 - (b).請建立 σ^2 在 $C.C.=1-\alpha$ 下的信賴區間。
 - (c).假設 $\sigma^2 = 10$, m=n。試求應至少抽取多少樣本數,使得信賴區間長度在 2 個單位之內?
- 4. (10分)
 - (a).假設 $f(X;\theta)$ =($\theta+1$) X^{θ} ,0< X<1,檢定假設 H_0 : $\theta=2$, H_1 : $\theta=3$ 。 設拒絕域為 $X\leq 0.1, X\geq 0.9$,試求該檢定的 α 與 β 。
 - (b).根據過去經驗顯示考汽車駕照通過路考的機率為 0.5,某同學抽樣 50 位有駕照的路人,紀錄他們通過路考的次數,結果發現每人平均 2.5 次才通過路考,請在α =0.05 下,檢定考汽車駕照通過路考的機率是否小於 0.5。

見背面

國立臺灣大學 102 學年度碩士班招生考試試題

題號: 125 科目:統計學(A)

節次: 4 共 3 頁之第 2 頁

5. (20分) The data analyze here consist of test scores and class sizes in 1999 in 420 California school districts that serve kindergarten through eighth grade. The test score, *TestScore*, is the districtwide average of reading and math scores for fifth graders. Class size is measured by constructing the following binary variable

$$D_i = \begin{cases} 1 & \text{if } STR_i \le 20 \\ 0 & \text{if } STR_i > 20 \end{cases}$$

where STR_i stands for the student-teacher ratio in *i*-th district for $i=1,2,\ldots,420$. Consequently, the observations are divided into two groups: small class size $(STR \leq 20)$ and large class size (STR > 20). The following table contains the information about group means and standard deviations.

Class Size	Average score (\overline{Y})	Std. dev. (s_Y)	N
Small $(STR \le 20)$	657. <mark>4</mark>	19.4	238
Large $(STR > 20)$	650.0	17.9	182

The ordinary least squares (OLS) is used to estimate a line relating the student-teacher ratio to the test scores using the 420 observations, yielding the following result.

$$\widehat{TestScore} = \widehat{\beta}_0 + \widehat{\beta}_1 \times D$$

$$(SE(\widehat{\beta}_0)) \quad (SE(\widehat{\beta}_1))$$

$$= 650.0 + ? \times D,$$

$$(1.3) \quad (?)$$

where $\hat{\beta}_0$ and $\hat{\beta}_1$ are OLS estimates, and the heteroskedasticity-robust standard errors of the estimates are $SE(\hat{\beta}_0)$ and $SE(\hat{\beta}_1)$; that is, $\hat{\beta}_0 = 650.0$ and $SE(\hat{\beta}_0) = 1.3$.

- (a) Calculate $SE(\hat{\beta}_1)$.
- (b) Is the relationship between TestScore and D (binary variable for class size) statistically significant?
- (c) Are the OLS estimators, $\hat{\beta}_0$ and $\hat{\beta}_1$, efficient among all estimators that are linear in TestScore and unbiased, conditional on STR? Explain.

Now, consider the following regression:

$$\widehat{TestScore} = \hat{\beta}_0 + \hat{\beta}_1 STR + \hat{\beta}_2 PctEL$$

where PctEL is the percentage of students in the district who are English learners. Econometricians have verified that the STR and PctEL are positively correlated and the asymptotic variance of $\hat{\beta}_1$ is

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{420} \left[\frac{1}{1-\rho^2} \right] \frac{\sigma_{error}^2}{\sigma_{STR}^2},$$

where ρ is the population correlation between the STR and PctEL.

題號: 125 國立臺灣大學 102 學年度碩士班招生考試試題

科目:統計學(A) 節次: 4

共 3 頁之第 3 頁

(d) Comment on the following statements: "When STR and PctEL are correlated, the variance

(d) Comment on the following statements: "When STR and PctEL are correlated, the variance of $\hat{\beta}_1$ is larger than it would be if STR and PctEL were uncorrelated. Thus, if you are interested in β_1 , it is best to leave PctEL out of the regression if it is correlated with STR"

6. (10分) Consider the following data generating process

$$y_t = \alpha y_{t-1} + e_t$$
$$e_t = \rho e_{t-1} + v_t,$$

where y_t are observable, v_t are white noise, α, ρ are parameters, and we assume $\mathbb{E}[y_{t-1}v_t] = 0$, $\mathbb{E}[y_{t-1}e_{t-1}] = \mathbb{E}[y_te_t]$, and $\mathbb{E}[e_t^2] = Var(e_t) = \sigma^2$. Find the condition under which the least-squares method can be used to consistently estimate α through the regression $y_t = \alpha y_{t-1} + e_t$.

7. (5分) Consider the regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + e_i,$$

where Y, X, e, and β are dependent variable, regressors, error term, and unknown parameters, respectively. A single restriction (null hypothesis) involving multiple coefficients can be tested using a transformation in which the original regression model is rewritten to turn the restriction under the null hypothesis into a restriction on a single regression coefficient. Now, use the trick mentioned above to transform the regression so that you can use a t-statistic to test the null hypothesis: $\beta_1 + c\beta_2 = 1$, where c is a known constant.

8. (15分) Consider the simple regression

$$y = \beta_0 + \beta_1 x + e. \tag{1}$$

We say x is endogenous if x is correlated with the error term e. Suppose that there is an instrumental variable z which is correlated with x but uncorrelated with e. Thus, we can write

$$\dot{x} = \theta_0 + \theta_1 z + v$$

and $\theta_1 \neq 0$. Since θ_0 and θ_1 are unknown, econometricians use OLS to calculate $\hat{x} = \hat{\theta}_0 + \hat{\theta}_1 z$ together with the residual $\hat{v} = x - \hat{x}$. Now, replace the x in equation (1) with \hat{x} , yielding

$$y = \beta_0 + \beta_1 \hat{x} + \beta_1 \hat{v} + e$$

$$\equiv \beta_0 + \beta_1 \hat{x} + \gamma \hat{v} + e,$$
(2)

where to reduce confusion, we let the coefficient of \hat{v} be denoted as γ . If we omit \hat{v} from equation (2), the regression becomes

$$y = \beta_0 + \beta_1 \hat{x} + e. \tag{3}$$

- (a) If x is exogenous, are the OLS estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ in (2) and (3) unchanged? If x is exogenous, will the OLS estimator $\hat{\gamma}$ converge to β_1 in large samples? Explain all your answers.
- (b) If x is endogenous, will $\hat{\gamma}$ converge to β_1 in large samples? Explain.
- (c) Suggest a t-test testing for endogeneity of the regressor x according to the discussions in parts (a) and (b). (*Hint*: use the trick mentioned in the Question 7.)

試題隨卷繳回