國立臺灣大學 102 學年度碩士班招生考試試題 科目:有機無機 節次: 6 題號: 66 共 万 頁之第 ※ 注意:有機化學 Part I. 單選題請作答於試卷內之「選擇題作答區」, 其餘題目均請作 答於「非選擇題作答區」,並標明作答部分及題號依序作答。 注意:有機化學試題包含單選題及問答題兩部份 Part I. 單選題 (15題,30分)※ 本大題請於試卷內之「選擇題作答區」依序作答。 - 1. Which of these is not a Lewis acid? - (A) AlCl₃ - (B) H_3O^+ - (C) FeCl₃ - (D) SO₃ - (E) PPh₃ - What is the index of hydrogen deficiency for the following compound? - (A)5 - (B)6 - (C) 7 - (D) 8 3. I and II are: - (A) constitutional isomers. - (B) diastereomers. - (C) identical. - (D) enantiomers. - (E) not isomeric. - 4. Reaction of sodium ethoxide with 1-bromopentane at 30°C yields primarily: - (A) CH₃CH₂CH₂CH₂CH₂CCH₂CH₃ - (B) CH₃CH₂CH₂CH₂CH₂OH - (C) CH₃CH₂CH₂CH₂CH₃ - (D) CH₃CH₂CH=CHCH₃ - (E) CH₃CH₂CH₂CH=CH₂ - 5. Which is not a satisfactory procedure for the synthesis of 3-methyl-1-butene? - (A) (CH₃)₂CHC≡CH + Li/liq.NH₃ - (B) (CH₃)₂CHCH₂CH₂Br + CH₃ONa/CH₃OH - (C) $(CH_3)_2CHCHOHCH_3 + conc. H_2SO_4$ - (D) $(CH_3)_2CHC \equiv CH + H_2/Ni_2B$ - (E) $(CH_3)_2CHCHBrCH_3 + (CH_3)_3COK/(CH_3)_3COH$ - 6. Which of these compounds belongs to the class of substances commonly known as "halohydrins"? - (A) BrCH₂CH₂Cl - (B) ClCH2CO2H - (C) ICH2CH2OH - (D) FCH₂CH₂NH₂ - (E) HOCH2COCl - 7. An example of a reaction having an $E_{act} = 0$ would be: - (A) $Br \cdot + Br Br$ \longrightarrow $Br Br + Br \cdot$ - (B) $F \cdot + CH_4 \longrightarrow H F + CH_3 \cdot$ - (C) CH_3 + CH_3CH_3 \longrightarrow $CH_4 + CH_3CH_2$ - (D) $Br + H Br \longrightarrow H Br + Br$ - (E) CH₃· + CH₃· → CH₃–CH₃ # 見背面 ### 國立臺灣大學 102 學年度碩士班招生考試試題 科目:有機無機 節次: 6 題號: 66 共 **5** 頁之第 **2** 頁 - 8. Fundamentally, 2-methyl-2-pentanol does not undergo oxidation by H₂CrO₄ because: - (A) the intermediate chromate ester is not formed. - (B) the oxidant isn't in a sufficiently high oxidation state. - (C) the alcohol undergoes dehydration. - (D) the intermediate chromate ester cannot lose hydrogen. - (E) Actually, this oxidation does occur. - 9. A thermodynamically-controlled reaction will yield predominantly: - (A) the more/most stable product. - (B) the product whose formation requires the smallest free energy of activation. - (C) the product that can be formed in the fewest steps. - (D) the product that is formed at the fastest rate. - (E) the product which possesses the greatest potential energy. - 10. Cyclopentadiene is unusually acidic for a hydrocarbon. An explanation for this is the following statement. - (A) The carbon atoms of cyclopentadiene are all sp^2 -hybridized. - (B) Removal of a proton from cyclopentadiene yields an aromatic anion. - (C) Removal of a hydrogen atom from cyclopentadiene yields a highly stable free radical. - (D) Removal of a hydride ion from cyclopentadiene produces an aromatic cation. - (E) Cyclopentadiene is aromatic. - 11. Which of the following is not a meta-directing substituent when present on the benzene ring? - (A) -NHCOCH₃ - (B) -NO₂ - $(C) N(CH_3)_3^+$ - (D) -C≡N - (E) -CO₂H 12. The product, C, of the following reaction sequence, CH₃CH₂COOH $$\xrightarrow{\text{PCl}_5}$$ A $\xrightarrow{\text{C}_6\text{H}_6}$ B $\xrightarrow{\text{NaBH}_4}$ C would be: - 13. 8-Hydroxy acids can be esterified intramolecularly to form compounds known as which of these? - (A) Anhydrides - (B) Cycloalkenes - (C) Lactams - (D) Lactones - (E) Cyclic ketones - 14. The overall conversion RBr \longrightarrow RCH₂NH₂ can be accomplished by successive application of which of these sets of reagents? - (A) Mg, ether; then NH₃ (B) NaCN; then LiAlH4, ether (C) NaN3; then LiAlH4, ether (D) H₂C=O; then NH₃ (E) H₂NOH; then LiAlH₄, ether # 國立臺灣大學 102 學年度碩士班招生考試試題 科目:有機無機 節次: 6 題號: 66 共 **与** 頁之第 **弓** 頁 15. Which reagent would best serve as the basis for a simple chemical test to distinguish between 2-pentanone and 3-pentanone? (A) Br₂/CCl₄ (B) CrO₃/H₂SO₄ (C) I2 in NaOH (D) NaHCO₃/H₂O (E) $Ag(NH_3)_2^+$ Part II. 問答題 (3題,20分) 1. Write a mechanism for the following reaction. (5 points) 2. Write a detailed mechanism for the following reaction. (7 points) 3. Deduce the structure of compound E (C₅H₁₀O₂) based on the following ¹H- and ¹³C-NMR spectra. Provide step-by-step explanations for your answers. (8 points) ## 國立臺灣大學 102 學年度碩士班招生考試試題 科目: 有機無機 節次: 6 題號: 66 共 **仁** 頁之第 4 頁 **Inorganic Chemistry** 1-6. Multiple Choice Questions: (30%; 1 point per choice; -0.5 per mistake) Mark your answers as: (a) O (b) X (c) O (d) X (e) O - 1. Which of the following species is optically active? - (a) H,O, (b) CBrClFI (c) [PdBrClFI]2- (d) [Cr(NH₃)₆]³⁺ - (e) [Co(en)₃]³⁺ (where "en" is "ethylenediamine") - 2. Which of the following cubic lattices contains four cations per unit cell? - (a) NaCl - (b) CsCl - (c) Zn: - (d) CaF₂ - (e) Na₂O - 3. The color of which of the following species is due to charge-transfer? - (a) Mn²⁺(aq) (b) KMnO₄ (c) [Cu(NH₃)₄]²⁺ - (d) Fe₃O₄ - (e) KFeFe(CN)₆ - 4. Which of the following diatomic species is diamagnetic? - (a) BeC - (b) BN - (c) B₂ (d) CN+ - (e) OF- - 5. Which of the following statement is CORRECT? - (a) The superconductors have zero electrical resistance at temperatures below their critical temperatures. - (b) Metals can be superconductors. - (c) GaAs has a larger energy gap than silicon. - (d) Light-emitting diode (LED) is semiconductor materials. - (e) P dopped GaAs has larger band gaps than GaAs. - 6. Which of the following statement about the normal mode vibrations of planar PtCl₄²⁻ is CORRECT? - (a) v_1 belongs to A_{1g} symmetry - (b) ν₂ belongs to A_{2g} symmetry - (c) v₃ belongs to A_{2u} symmetry - (d) v₄ belongs to B_{2u} symmetry - (e) v₅ belongs to B_{2R} symmetry 國立臺灣大學 102 學年度碩士班招生考試試題 科目:有機無機 節次: 6 #### Problems: (a) Give the symmetry lables for the 3d-, 4s- and 4p-orbitals of the central metal atoms in (i) [CrF₆]³⁻ and (ii) trans-[Cr(en)₂F₂][†]. (where "en" is "ethylenediamine") (8%) (b) How many IR peaks are expected in the Cr-F stretching region for these two complexes? Explain. (12%) | A_{1g} | | |--|----------------| | A_{2g} | | | B_{1g} 1 -1 1 1 -1 1 1 -1 x^2-y^2 | | | D_{2g} | | | $E_g = 2 0 -2 0 0 2 0 -2 0 0 (R_c R_c) (r2.18)$ | | | Atu i i i i i i i i i i i i i i i i i i i | | | A_{2u} | | | B_{1u} 1 -1 1 1 -1 -1 1 -1 | | | B_{2v} 1 -1 1 -1 1 -1 1 -1 | • | | E _u 2 0 -2 0 0 -2 0 2 0 0 (x.y) | | | 7/11/1/2020 | | | $O_{\rm h}$ E $8C_3$ $6C_2$ $6C_4$ $3C_2$ i $6S_4$ $8S_6$ $3\sigma_{\rm h}$ $6\sigma_{\rm d}$ (m3m) | | | | | | A_{1g} 1 1 1 1 1 1 1 x^2+y^2+ | 2 2 | | A2g 1 1 -1 -1 1 1 -1 1 1 -1 | • | | E ₈ 2 -1 0 0 2 2 0 -1 2 0 $(2z^2 - x^2)$ | -ر√2, | | | · y²)) | | T_{1g} 3 0 -1 1 -1 3 1 0 -1 -1 (R_{g}, R_{g}, R_{g}) T_{2g} 3 0 1 -1 -1 3 -1 0 -1 | | | $1 = \frac{1}{2} $ |) | | | | | | | | T. 2 0 1 1 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |