

考試科目近代物理所別應用物理的考試時間2月2年(日)第二節

2. [14 points] Relativity

A frame S' moves at constant speed v along the positive x direction with respect to the inertial S frame. A thin rod of length L', at rest in the S' frame, makes an angle of θ' with the x' axis, as in Figure 2.

- (a) Determine the length of the rod as measured by a stationary observer in the S frame.
- (b) Determine the angle θ the rod makes with the x axis.

Figure 2

3. [24 points] Schrödinger's theory of quantum mechanics

Consider a particle confined in a one-dimensional rigid box (i.e., an infinite potential well) of length a. The particle moves freely inside $0 \le x \le a$ but cannot escape outside. Suppose that at time t = 0 the particle is described by the wave function

$$\Psi(x,t=0)=rac{1}{\sqrt{2}}ig[arphi_1(x)+arphi_2(x)ig],$$

where $\varphi_1(x)$ and $\varphi_2(x)$ are the two lowest stationary-state wave functions (energy eigenfunctions) for the rigid box, corresponding to the energies E_1 and E_2 .

- (a) Assuming the stationary-state wave functions $\varphi_1(x)$ and $\varphi_2(x)$ are normalized, verify that the wave function Ψ is also normalized.
- (b) Show that the probability density $|\Psi(x,t)|^2$ varies with time, and the time dependence is periodic.

4. [20 points] Quantum particle on a ring

We consider a particle with mass m that is confined to move on a circle of radius a. Write down the time-independent Schrödinger equation for this particle and solve it to find the eigenstate energies (allowed energies).