考試科目為中生代數所別應用數學系 考試時間 2月24日(日)第2節

Please show all your work.

- 1. Let T be a linear operator on a vector space V, let v be a nonzero vector in V, and let W be the T-cyclic subspace of V generated by v. Prove that
 - (a) (5%) W is T-invariant.
 - (b) (10%) Any T-invariant subspace of V containing v also contains W.
- 2. Let C[-1,1] denote the inner product space of real continuous functions defined on [-1,1]. For any $f,g \in C[-1,1]$, the inner product is defined as

$$\langle f, g \rangle = \int_{1}^{q} f(x)g(x)dx$$

- (a) (5%) Show that $u_1(x) = \frac{1}{\sqrt{2}}$ and $u_2(x) = \frac{\sqrt{6}}{2}x$ form an orthonormal set of vectors.
- (b) (10%) Let W be the subspace of C[-1,1] spanned by $u_1(x)$ and $u_2(x)$. Find $w(x) \in W$ such that w(x) minimizes ||w(x)-h(x)|| where $||\cdot||$ is the norm induced by the inner product and $h(x) = x^{1/3} + x^{2/3}$.
- 3. (10%) Let A be an $n \times n$ matrix and let $B = I 2A + A^2$. Show that if $\lambda = 1$ is an eigenvalue of A, then the matrix B will be singular.
- 4. Let Q be a 3×3 orthogonal matrix whose determinant is equal to 1.
 - (a) (10%) If the eigenvalues of Q are all real and if they are ordered so that $\lambda_1 \ge \lambda_2 \ge \lambda_3$, determine the values of all possible triples of eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$.
 - (b) (10%) In the case that the eigenvalues λ_2 and λ_3 are complex, what are the possible values for λ_1 ? Explain.

考試科目為外生代製 所别應用數學名 考試時間 2月24日(日)第 2 節

5. (10%) Let $A = [a_{i,j}]$ be an $n \times n$ matrix with eigenvalues $\lambda_1, \dots, \lambda_n$. Show that

$$\lambda_j = a_{j,j} + \sum_{i \neq j} (a_{i,i} - \lambda_i)$$
 for $j = 1, ..., n$.

- 6. A linear operator T on a finite-dimensional inner product space with inner product $\langle \bullet, \bullet \rangle$ is called **positive definite** if T is self-adjoint and $\langle T(x), x \rangle > 0$ for all $x \neq 0$.
 - (a) (15%) Let V be a finite-dimensional inner product space with inner product $\langle \bullet, \bullet \rangle$, and let T be a positive definite linear operator on V. Prove that $\langle x, y \rangle' = \langle T(x), y \rangle$ for all x and y in V defines another inner product on V.
 - (b) (15%) Prove the converse of (a): Let V be a finite-dimensional inner product space with inner product $\langle \bullet, \bullet \rangle$ and let $\langle \bullet, \bullet \rangle'$ be any other inner product on V. Then, there exists a unique linear operator T on V such that $\langle x, y \rangle' = \langle T(x), y \rangle$ for all x and y in V.

註