考試科目: 計算機數學

系所組別:

考試日期:0226, 節次:3

資訊工程學系

Part I. Linear Algebra (50%)

- Given x₁ = (1, 1, 1)^T and x₂ = (3, -1, 4)^T: (a) Do x₁ and x₂ span ℝ³? Explain. (3%) (b) Let x₃ be a third vector in ℝ³ and set X = (x₁, x₂, x₃). What condition(s) would X have to satisfy in order for x₁, x₂, and x₃ to form a basis for ℝ³? (3%) (c) Find a third vector x₃ that will extend the set {x₁, x₂} to a basis for ℝ³. (4%)
- 2. Let $A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$, (a) Find a basis and rank for the row space of A (4%); (b)

Find a diagonal matrix D of A and calculate A^{10} (8%); (**L**) Compute e^A , the exponential of A (4%). (**d**) Let L be the linear operator mapping \mathbb{R}^3 into \mathbb{R}^3 defined

by $L(\mathbf{x})=A\mathbf{x}$ and let $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0\\-2\\1 \end{bmatrix}$. Find the transition matrix V

corresponding to a change of basis from $\{v_1, v_2, v_3\}$ to $\{e_1, e_2, e_3\}$, and use it to determine the matrix B representing L with respect to $\{v_1, v_2, v_3\}$. (8%)

3. Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{bmatrix}$, find the bases for the (a) null space of A, N(A), (b) range of A, R(A), (c) N(A^T), and R(A^T). (16%)

(背面仍有題目,請繼續作答)

系所組別: 資訊工程學系

考試科目: 計算機數學

考試日期:0226・節次:3

Part II.

Discrete Mathematics (50%)

一、單選題

- 1. (5%) For an alphabet Σ , let $A, B, C \subseteq \Sigma^*$. Which statement is FALSE?
 - (A). (AB)C = A(BC).
 - (B). $AB \cup AC = A(B \cup C)$.
 - (C). $AB \cap AC \subseteq A(B \cap C)$.
 - (D). $(A \cup B)^* = (A^*B^*)^*$.
 - (E). $A^*A^* = A^*$.
- 2. (5%) Which statement is FALSE?
 - (A). If A={1, 2, 3, ..., 10}, the number of functions $f: A \rightarrow A$ satisfy $f^{1}(\{1, 2, 3\})=\emptyset$, $f^{1}(\{4, 5\})=\{1, 3, 7\}$, and $f^{1}(\{8, 10\})=\{8, 10\}$ is 7776.
 - (B). The number of nonnegative integer solutions of $x_1 + x_2 + x_3 + ... + x_7 = 37$ and $x_1 + x_2 + x_3 = 6$ where $x_1, x_2, x_3 > 0$ is $10 * \binom{34}{31}$.
 - (C). The coefficient of x^5 in $f(x) = (1 2x)^{-7}$ is $32 * {\binom{11}{5}}$.

(D). The coefficient of x^2yz^2 in the expansion of $[(x/2) + y - 3z]^5$ is $\frac{145}{2}$.

- 3. (5%) Which statement is **TRUE**?
 - (A). Let (A, R) be a poset. If (A, R) is a lattice, then it is a total order.
 - (B). If $A=\{1, 2, 3, 4, 5, 6, 7\}$ and the relation R is defined as if $(x, y) \in R$, x-y is a multiple of 3, then R is an equivalence relation of A.
 - (C). The subset relation is a total ordered relation.
 - (D). If (A, R) is a poset and $B \subseteq A$, then B has more than one lub.
- 4. (5%) Define the connective "Nand" by $(p \uparrow q) \Leftrightarrow \neg (p \land q)$, for any statements p, q. Which statement is FALSE?
 - (A). $\neg p \Leftrightarrow (p \uparrow p)$.
 - (B). $(p \lor q) \Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)$.
 - (C). $(p \land q) \Leftrightarrow (p \uparrow q) \uparrow (p \uparrow q)$.
 - (D). $p \rightarrow q \Leftrightarrow p \uparrow (p \uparrow q)$.
- 5. (5%) Let f: X → Y and g: Y → Z be functions. Which statement is FALSE?
 (A). If g f is one-to-one, f is one-to-one.
 - (B). If $g \circ f$ is one-to-one, g is one-to-one.
 - (C). If $g \circ f$ is onto, g is onto.
 - (D). If $g \circ f$ is bijection, g is onto.
 - (E). If $g \circ f$ is bijection, f is one-to-one.
- 二、 計算題
- 1. (15%) Use the recurrence relation to determine the number of *n*-digit quaternary (0, 1, 2, 3) sequences in which there is never a '0' anywhere to the right of a '3'.
- 2. (10%) Let A={1, 2, 3, 4, 5} and B={u, v, w, x, y}. Determine the number of one-to-one functions $f: A \rightarrow B$ where $f(1) \neq v$, w, $f(2) \neq u$, w, $f(3) \neq x$, y and $f(4) \neq v$, x, y.