系所組別：資訊工程學系

Part I．
 Linear Algebra（50\％）

1．Given $x_{1}=(1,1,1)^{\mathrm{T}}$ and $\mathrm{x}_{2}=(3,-1,4)^{\mathrm{T}}$ ：（a）Do x_{1} and x_{2} span \mathbb{R}^{3} ？Explain．（3\％） （b）Let x_{3} be a third vector in \mathbb{R}^{3} and set $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ ．What condition（s）would X have to satisfy in order for x_{1}, x_{2} ，and x_{3} to form a basis for $\mathbb{R}^{3} ?(3 \%)$（c）Find a third vector x_{3} that will extend the set $\left\{x_{1}, x_{2}\right\}$ to a basis for \mathbb{R}^{3} ．（4\％）
2．Let $A=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1\end{array}\right]$ ，（a）Find a basis and rank for the row space of A（4\％）；（b） Find a diagonal matrix D of A and calculate $\mathrm{A}^{10}(8 \%)$ ；（C）Compute e^{A} ，the exponential of A（4\％）．（d）Let L be the linear operator mapping \mathbb{R}^{3} into \mathbb{R}^{3} defined by $L(\mathrm{x})=\mathrm{Ax}$ and let $\mathrm{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \mathrm{v}_{3}=\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]$ ．Find the transition matrix V corresponding to a change of basis from $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{\mathbf{3}}\right\}$ ，and use it to determine the matrix B representing L with respect to $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ ．（8\％）

3．Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4\end{array}\right]$ ，find the bases for the（a）null space of $A, N(A)$ ，（b）range of A ， $R(A)$ ，（c）$N\left(A^{T}\right)$ ，and $R\left(A^{T}\right) .(16 \%)$

Part II．

Discrete Mathematics（50\％）

——單選題

1．（5\％）For an alphabet Σ ，let $A, B, C \subseteq \Sigma^{*}$ ．Which statement is FALSE？
（A）．$(A B) C=A(B C)$ ．
（B）．$A B \cup A C=A(B \cup C)$ ．
（C）．$A B \cap A C \subseteq A(B \cap C)$ ．
（D）．$(A \cup B)^{*}=\left(A^{*} B^{*}\right)^{*}$ ．
（E）．$A^{*} A^{*}=A^{*}$ ．
2．（5\％）Which statement is FALSE？
（A）．If $\mathrm{A}=\{1,2,3, \ldots, 10\}$ ，the number of functions $f: \mathrm{A} \rightarrow \mathrm{A}$ satisfy $f^{1}(\{1,2,3\})=\emptyset, f^{1}(\{4$ ， $5\})=\{1,3,7\}$ ，and $f^{1}(\{8,10\})=\{8,10\}$ is 7776 ．
（B）．The number of nonnegative integer solutions of $x_{1}+x_{2}+x_{3}+\ldots+x_{7}=37$ and $x_{1}+x_{2}+x_{3}=6$ where $x_{1}, x_{2}, x_{3}>0$ is $10 *\binom{34}{31}$ ．
（C）．The coefficient of x^{5} in $f(x)=(1-2 x)^{-7}$ is $32 *\binom{11}{5}$ ．
（D）．The coefficient of $x^{2} y z^{2}$ in the expansion of $[(x / 2)+y-3 z]^{5}$ is $\frac{145}{2}$ ．
3．（ 5% ）Which statement is TRUE？
（A）．Let (A, R) be a poset．If (A, R) is a lattice，then it is a total order．
（B）．If $\mathrm{A}=\{1,2,3,4,5,6,7\}$ and the relation R is defined as if $(x, y) \in \mathrm{R}, x-y$ is a multiple of 3 ， then R is an equivalence relation of A ．
（C）．The subset relation is a total ordered relation．
（D）．If（ A, \mathbf{R} ）is a poset and $B \subseteq A$ ，then B has more than one lub．
4．（5\％）Define the connective＂Nand＂by $(p \uparrow q) \Leftrightarrow \neg(p \wedge q)$ ，for any statements p, q ． Which statement is FALSE？
（A）．$\neg p \Leftrightarrow(p \uparrow p)$ ．
（B）．$(p \vee q) \Leftrightarrow(p \uparrow p) \uparrow(q \uparrow q)$ ．
（C）．$(p \wedge q) \Leftrightarrow(p \uparrow q) \uparrow(p \uparrow q)$ ．
（D）．$p \rightarrow q \Leftrightarrow p \uparrow(p \uparrow q)$ ．
5．（5\％）Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions．Which statement is FALSE？
（A）．If $g \circ f$ is one－to－one，f is one－to－one．
（B）．If $g \circ f$ is one－to－one，g is one－to－one．
（C）．If $g \circ f$ is onto，g is onto．
（D）．If $g \circ f$ is bijection，g is onto．
（E）．If $g \circ f$ is bijection，f is one－to－one．

二，計算題

1．（ 15% ）Use the recurrence relation to determine the number of n－digit quaternary $(0,1,2,3)$ sequences in which there is never a＇ 0 ＇anywhere to the right of a＇ 3 ＇．

2．（ 10% ）Let $A=\{1,2,3,4,5\}$ and $B=\{u, v, w, x, y\}$ ．Determine the number of one－to－one functions $f: \mathrm{A} \rightarrow \mathrm{B}$ where $f(1) \neq \mathrm{v}, \mathrm{w}, f(2) \neq \mathrm{u}, \mathrm{w}, f(3) \neq \mathrm{x}, \mathrm{y}$ and $f(4) \neq \mathrm{v}, \mathrm{x}, \mathrm{y}$ ．

