國立中山大學 113 學年度 碩士班暨碩士在職專班招生考試試題

科目名稱:普通物理【材光系碩士班選考、材料前瞻應材碩士班選考、材光聯合碩士班選考】

一作答注意事項-

考試時間:100 分鐘

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請 監試人員處理。
- · 答案卷限用藍、黑色筆 (含鉛筆) 書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶 (未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、 劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼, 亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

國立中山大學113學年度碩士暨碩士專班招生考試試題

科目名稱:普通物理【材光系碩士班選考、材料前瞻應材碩士班選考、材光聯合碩士班選考】 題號:488005

※ 本科目依簡章規定「不可以」使用計算機 (問答申論題)

共2頁第1頁

Problem 1. [Mechanics: 35 points]

There are two atoms A and B, one with the position \mathbf{x}_A and mass m_A , and the other with the position \mathbf{x}_B and mass m_B .

(a) [5 points] There is an electrostatic force \mathbf{F}_{BA} exerted by atom A on atom B, and a force \mathbf{F}_{AB} exerted by atom B on atom A. According to Newton's third law, $\mathbf{F}_{BA} = -\mathbf{F}_{AB}$. If we define the relative displacement $\mathbf{x} = \mathbf{x}_A - \mathbf{x}_B$, the relative motion can be described by the equation of motion:

$$\mathbf{F}_{AB} = \mu \frac{d^2 \mathbf{x}}{dt^2},$$

where μ is called "reduced mass". Prove

$$\mu = \frac{m_A \; m_B}{m_A + m_B}$$

(b) [5 points] The potential energy between the two atoms A and B can be approximated as the Lennard-Jones potential

 $U(x) = \epsilon \left[\left(\frac{\sigma}{x} \right)^{12} - 2 \left(\frac{\sigma}{x} \right)^{6} \right]$

where ϵ and σ are constants. Calculate the distance x_0 wherein the potential energy $U(x_0)$ is the minimum of U(x). x_0 is the bond length of the molecule AB.

- (c) [10 points] Around the minimum of U(x), the potential energy is approximately a parabolic curve. Do Taylor's expansion of U(x) around $x = x_0$ to the second order.
- (d) [5 points] The force can be derived from the potential energy by $F_{AB} = -\frac{dU}{dx}$. Using the Taylor's expansion obtained in the previous problem, calculate the approximate force around the minimum. The force you obtain should look like the Hooke's law F = -kx. What is the k? (expressed you answer with those given physical quantities $\mathbf{x}_A, m_A, \mathbf{x}_B, m_B, \epsilon, \sigma$)
- (e) [10 points] The two atoms are bound with approximately a Lennard-Jones potential, with a bond length x_0 . The Lennard-Jones force is like a spring with a elastic constant k. Therefore, the system is 2 balls coupled with a spring. Using the k you obtain in the previous problem, calculate the vibration (relative motion) angular frequency ω of the molecule AB (expressed you answer with those given physical quantities $\mathbf{x}_A, m_A, \mathbf{x}_B, m_B, \epsilon, \sigma$).

Problem 2. [Electromagnetism: 35 points]

The electric field at a distance \mathbf{z} from a point charge Q is:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2^2} \hat{\mathbf{z}},$$

where \hat{z} is the unit vector along the vector z. The electric potential is:

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{\rm r}$$

國立中山大學113學年度碩士暨碩士專班招生考試試題

科目名稱:普通物理【材光系碩士班選考、材料前瞻應材碩士班選考、材光聯合碩士班選考】題號:488005

※ 本科目依簡章規定「不可以」使用計算機 (問答申論題)

共2頁第2頁

Consider the following questions in the vacuum, and use the units in the above formula.

- (a) [10 points] Find the electric field inside a solid sphere of radius R that carries a uniform volume charge density ρ . Express your answer in terms of the total charge of the sphere, q.
- (b) [5 points] An atom can be approximately thought as a point nucleus (+q) surrounded by a uniformly charged solid spherical cloud (-q) of radius R. If there is an external electric field $\mathbf{E}_{\text{ext}} = E_{\text{ext}} \hat{x}$, the nucleus would move in the $+\hat{x}$ direction while the electron sphere would move in the opposite direction. If the distance between the nucleus and the center of the electron sphere is d, calculate the electric field $\mathbf{E}_{\text{electron}}$ exerted by the electron sphere to the nucleus.
- (c) [10 points] Following the previous problem, there are (1) the external field \mathbf{E}_{ext} , and (2) the electric field $\mathbf{E}_{\text{electron}}$ exerted by the electron sphere, onto the neucleus. If the two electric fields cancel each other, $\mathbf{E}_{\text{ext}} = -\mathbf{E}_{\text{electron}}$, then the atom system reaches equilibrium. Calculate the distance d at equilibrium.
- (d) [10 points] An electric dipole is composed of a charge +q at d/2, and a charge -q at -d/2. The dipole moment **p** is defined as $\mathbf{p} = q\mathbf{d}$. If there is a uniform external electric field \mathbf{E}_{ext} , prove that the torque

$$N = p \times E_{ext}$$
.

Problem 3. [Thermodynamics: 15 points]

A gas consisting of n moles of a monoatomic gas goes through the cycle shown in the Figure 1, wherein the pressure is constant for $A \to B$, the volume is constant for $B \to C$, and the temperature is constant for $C \to A$.

Figure 1

Calculate the heat transfer Q (Q = Δ U + W) for (a) A \rightarrow B, (b) B \rightarrow C, and (c) C \rightarrow A.

Problem 4. [Waves/Optics/Modern physics: 15 points]

If a propagating wave along the x direction has the form $f(x,t) = Ae^{i(kx-\omega t + \phi)}$, where x is the position, t is the time, A is a constant amplitude and ϕ is a constant phase.

- (a) [5 points] Calculate $f(x, t_0 + T)$, what is the difference between $f(x, t_0 + T)$ and $f(x, t_0)$?
- (b) [5 points] The wave is a periodic function of the time, so $f(x, t_0) = f(x, t_0 + T)$ for arbitrary t_0 (where T is the period). Use this relation, express the period T with A, k, ω , and ϕ .
- (c) [5 points] (i) Calculate $[f^*(x) \cdot f(x)]$. (* denotes the complex conjugate) (ii) Calculate $\frac{\partial^2 f}{\partial x^2}$. (iii) Calculate $\int_0^\lambda f(x,t)dx$, where λ is the wave length.