國立成功大學 113學年度碩士班招生考試試題

編 號: 174

系 所:電機工程學系

科 目: 線性代數

日 期: 0201

節 次:第3節

備 註:不可使用計算機

編號: 174

國立成功大學 113 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:線性代數

考試日期:0201,節次:3

第1頁,共1頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. (30 pts, 3 pts each) Mark each statement True or False (2 pts for correct answer). Justify each answer (1 pts).
 - a. If U is $m \times n$ with orthogonal columns, then UU^Tx is the orthogonal projection of x onto Col U.
 - b. If **B** is $m \times n$ and **x** is a unit vector in \Re^n , then $||\mathbf{B}\mathbf{x}|| \le \sigma_1$, where σ_1 is the first singular value of **B**.
 - c. A singular value decomposition of an $m \times n$ matrix **B** can be written as **B** = **P** Σ **Q**, where **P** is an $m \times m$ orthogonal matrix, **Q** is an $n \times n$ orthogonal matrix, and Σ is an $m \times n$ "diagonal" matrix.
 - d. If W is a subspace, then $\|\text{projw }\mathbf{v}\|^2 + \|\mathbf{v} \text{projw }\mathbf{v}\|^2 = \|\mathbf{v}\|^2$.
 - e. A least-squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ is the vector $\mathbf{A}\hat{\mathbf{x}}$ in Col A closest to b, so that $||\mathbf{b} \mathbf{A}\hat{\mathbf{x}}|| \le ||\mathbf{b} \mathbf{A}\mathbf{x}||$ for all \mathbf{x} .
 - f. The normal equations for a least-squares solution of Ax = b are given by $\hat{x} = (A^T A)^{-1} A^T b$.
 - g. If A is row equivalent to the identity matrix I, then A is diagonalizable.
 - h. Each eigenvector of an invertible matrix A is also an eigenvector of A^{-1} .
 - i. If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is onto, then rank $\mathbf{A} = m$.
 - j. A change-of-coordinates matrix is always invertible.
- 2. (16 pts, 8 pts each) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - a. What is the dimension of the range of T if T is a one-to-one mapping? Explain.
 - b. What is the dimension of the kernel of T if T maps \Re^n onto \Re^m ? Explain.
- 3. (16 pts, 8 pts each)
 - a. In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2t, \sin t \cos t\}$.
 - b. The set $B = \{1 t^2, t t^2, 2 2t 6t^2\}$ is a basis for P_2 . Find the coordinate vector of $\mathbf{p}(t) = 3 + t 6t^2$ relative to B.
- 4. (20 pts) Find the Singular Value Decomposition of $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$. That is, write $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.
- 5. (18 pts) Find a least-squares solution (8 pts) and its least-squares error (10 pts) of Ax = b, where A =

$$\begin{bmatrix} 1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5 \end{bmatrix}$$
 and
$$B = \begin{bmatrix} 3 \\ 1 \\ -4 \\ 2 \end{bmatrix}.$$