國立成功大學 113學年度碩士班招生考試試題

編 號: 156

系 所: 自然災害減災及管理國際碩士學位

學程

科 目:水文學

日 期: 0201

節 次:第3節

備 註:不可使用計算機

編號: 156

國立成功大學 113 學年度碩士班招生考試試題

系 所:自然災害減災及管理國際碩士學位學程

考試科目:水文學

考試日期:0201,節次:3

第1頁,共2頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- (1) Please explain the following terms
 - (a) Hypothesis of Unit Hydrograph. [5 conditions] (5%)
 - (b) The definition of Time of Concentration (t_c). (5%)
 - (c) Please list five distributions that are commonly used in hydrology. (5%)
 - (d) Rational Method. (5%)
 - (e) Evapotranspiration. (5%).

* The calculation process is necessary

(2) Using the Inflow records in Table 1, calculate the outflow by using the Muskingum method if X=0.2, K=2 hour, $\Delta t=1$ hour, and the outflow in hour 1 (I_I) was 50 m³/s.

Table 1 Inflow records

Time (hour)	1	2	3	4
Inflow (m ³ /s)	50	80	120	210

- (a) Explain the hypothesis of the Muskingum method by drawing a diagram. (5%)
- (b) Derive the C₀, C₁, C₂ of Muskingum method. (10%)

$$C_0 = \frac{-KX + 0.5\Delta t}{K(1 - X) + 0.5\Delta t}$$

$$C_1 = \frac{KX + 0.5\Delta t}{K(1 - X) + 0.5\Delta t}$$

$$C_2 = \frac{K(1 - X) - 0.5\Delta t}{K(1 - X) + 0.5\Delta t}$$

$$O_2 = C_0 I_2 + C_1 I_1 + C_2 O_1$$

(c) Calculating the outflow hydrograph of hours 2, 3, and 4. (10%)

編號: 156

國立成功大學 113 學年度碩士班招生考試試題

系 所:自然災害減災及管理國際碩士學位學程

考試科目:水文學

考試日期:0201,節次:3

第2頁,共2頁

(3) Using the derived direct runoff hydrograph in Table 2, determine the 1-hr unit hydrograph for a 4-hr storm have the following rain in Table 3. Assuming the Φ value (the constant infiltration capacity) is 1 cm/hr.

Table 2 direct runoff hydrograph

Time(hr)	0	1	2	3	4	5	6	7	8	9	10	11
Runoff(cms)	.0	6	23	50	88	112	97	61	30	11	2	0

Table 3 Storm raw rain records

Time(hr)	1	2	3	4	5
rainfall(cm)	3	4	2	1	0

- (a) Calculating the effective rain. (5%)
- (b) Calculating 1-hr unit hydrograph. (10%)?
- (c) Calculating 2-hr unit hydrograph by using S-curve method. (10%)
- (4) The relationship between the water level (H) and outflow (Q) of a reservoir is given in Table 4, and the inflow relationship is provided in Table 5. The storage capacity is defined as S = AH, where the area $A = 4000 \text{ m}^2$. The calculation time step is $\Delta t = 600$ seconds. Using the Puls Reservoir Routing Method, calculate the outflow in the first 30 minutes, assuming the reservoir was initially empty. (25 %)

Table 4

Water Level	Outflow			
H (m)	Q (cms)			
0	0			
1	5			
2	10			
3	30			
4	40			
5	65			
6	70			
7	80			
8	90			

Table 5

1 auto 3				
Time	Inflow			
(min)	I (cms)			
0	0			
10	20			
20	30			
30	60			
40	100			
50	50			
60	40			
70	20			
80	0			