國立成功大學

113學年度碩士班招生考試試題

編 號: 178、187、193

電機工程學系

系 所:電腦與通信工程研究所

電機資訊學院-微電、奈米聯招

科 目:電子學

日期:0201

節 次:第1節

備 註:可使用計算機

編號: 178、187、193 國立成功大學 113 學年度碩士班招生考試試題

系 所:電機工程學系,電腦與通信工程研究所,電機資訊學院-微電、奈米聯招

考試科目:電子學 考試日期:0201,節次:1

第1頁,共3頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. Fig. 1 uses an ideal op amp to design a differentiation circuit for which the time constant is 10⁻³ s using a 10-nF capacitor. (16%)
 - (a) What is the value of resistor (R)? (4%)
 - (b) What are the gains and phase shifts found for this circuit at one-tenth and 10 times the unity-gain frequency? (4%)
 - (c) A series input resistor is added to limit the gain magnitude at high frequencies to 100 V/V. What is the associated 3-dB frequency? (4%)
 - (d) What gain and phase shift result at 10 times the unity-gain frequency? (4%)

- 2. In the common-gate amplifier circuit of Fig. 2, Q_2 and Q_3 are matched. $K_n(W/L)_n = K_p(W/L)_p = 4 \text{ mA/V}^2$, and all transistors have threshold voltage $|V_t| = 0.8 \text{ V}$ and Early voltage $|V_A| = 20 \text{ V}$. The signal v_{sig} is a small sinusoidal signal with no dc component. (20%)
 - (a) Neglecting the effect of V_A , find the required value of V_{BIAS} . (4%)
 - (b) Find the values of g_{m1} and r_o for all transistors. (4%)
 - (c) Find the input resistance (Rin). (4%)
 - (d) Find the output resistance (Rout). (4%)
 - (e) Calculate the voltage gains v_o/v_i and v_o/v_{sig} . (4%)

編號: 178、187,193

國立成功大學 113 學年度碩士班招生考試試題

系 所:電機工程學系、電腦與通信工程研究所、電機資訊學院-微電、奈米聯招

考試科目:電子學

考試日期:0201,節次:1

第2頁,共3頁

- 3. The feedback current amplifier in Fig. 3 utilizes two identical NMOS transistors sized so that at $I_D=0.2$ mA they operate at $V_{OV}=(V_{GS}-V_t)=0.2$ V. Both devices have threshold voltage $V_t=0.5$ V and Early voltage $V_A=10$ V. (14%)
 - (a) Find the voltage gain $A_f = I_o/I_s$ (4%)
 - (b) Find the input resistance (R_{in}) and output resistance (R_{out}). (10%)

4. The op amp in the circuit of Fig. 4 has an open-loop gain of 10^6 and a single-pole rolloff with $\omega_{3dB} = 100$ rad/s. Please find the close-loop transfer function, including its zero and poles. (10%)

Fig. 4

- 5. Figs. 5(a) and (b) show two types of oscillators, and the configuration in Fig. 5(b) is the most commonly used configuration nowadays. Please answer the following questions. (20%)
 - (a) Describe the Barkhausen criterion. (4%)
 - (b) Draw the small signal model and derive the loop gain of Fig. 5(a). (6%)
 - (c) According to the results in (b), prove that the oscillation frequency $\omega_0 = \frac{1}{\sqrt{L\frac{C_1C_2}{C_1+C_2}}}$.(4%)

編號: 178、187、193 國立成功大學 113 學年度碩士班招生考試試題

系 所:電機工程學系、電腦與通信工程研究所、電機資訊學院-微電、奈米聯招

考試科目:電子學

考試日期:0201,節次:1

第3頁,共3頁

(d) What is the role of inverter with feedback resistor R_F in Fig. 5(b). (6%)

Fig. 5(a)

Fig. 5(b)

- 6. The BJTs in the circuits of Fig. 6 have $\beta_P=20$, $\beta_N=200$, $|V_{BE}|=0.6V$ and $|V_A|=100V$. (20%)
 - (a) Please find the value of Ic in Fig. 6(a). (7%)
 - (b) Please find the value of V_c in Fig. 6(b). (7%)
 - (c) Please find the value of Rin in Fig. 6(b). (6%)

Fig. 6(a)

Fig. 6(b)