國立臺灣大學 113 學年度碩士班招生考試試題

科目: 代數

題號:40

節次: 2

題號:

共 1 頁之第 1 頁

1. Let G be a group of order 231.

(a) (5 points.) Prove that a Sylow 7-subgroup of G is normal in G.

(b) (15 points.) Prove that the center Z(G) contains a Sylow 11-subgroup of G.

- 2. (15 points.) Classify the quotient group $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})/\langle (4,4,8) \rangle$ according to the fundamental theorem for finitely generated abelian groups. Here $\langle (4,4,8) \rangle$ denotes the cyclic subgroup generated by (4,4,8).
- 3. Let R be an integral domain such that every ideal is finitely generated.
 - (a) (10 points.) Prove that R satisfies the ascending chain condition on ideals. That is, prove that if $I_1 \subseteq I_2 \subseteq \ldots$ is an ascending chain of ideals of R, then there exists an integer N such that $I_n = I_N$ for all $n \ge N$.
 - (b) (15 points.) Prove that every nonzero, nonunit element of R can be factored into a product of irreducibles.
- 4. Let $R = \mathbb{Z}[i]$. (Here $i = \sqrt{-1}$.)
 - (a) (5 points.) Prove that 4 + i is an irreducible in R.
 - (b) (5 points.) What is the characteristic of the field R/(4+i), and how many elements are there in R/(4+i)?
 - (c) (5 points.) Find the order of $(1+i) + \langle 4+i \rangle$ in the multiplicative group of nonzero elements in $R/\langle 4+i \rangle$.
 - (d) (5 points.) Express the multiplicative inverse of $(1+2i)+\langle 4+i\rangle$ in the form $(a+bi)+\langle 4+i\rangle$, $a,b\in\mathbb{Z}$.
- 5. (20 points.) Let p be a prime. Prove that for any nonzero element a in \mathbb{F}_p , the polynomial $x^p x + a \in \mathbb{F}_p[x]$ is irreducible and separable over \mathbb{F}_p . (Here \mathbb{F}_p denotes a finite field of p elements. *Hint*: Consider the action of the Frobenius automorphism on the roots.)

試題隨卷繳回