國立臺灣大學 113 學年度碩士班招生考試試題

科目:幾何節次:2

共 | 頁之第 | 頁

1. (20%) Let $\gamma(s): I \to \mathbb{R}^3$ be a curve parametrized by arc-length, where I is some open interval in \mathbb{R}^1 . Suppose that γ has positive curvature for all $s \in I$. Denote by $\mathbf{T}(s), \mathbf{N}(s)$ and $\mathbf{B}(s)$ its Frenet frame. We call the line passing through $\gamma(s)$ with direction $\mathbf{B}(s)$ the binormal line of γ at s.

If $\gamma(I)$ lies in a sphere, and all its binormal lines are tangent to this sphere, show that γ is contained in a great circle of this sphere.

- 2. (20%) Let $\Sigma \subset \mathbb{R}^3$ be a connected, regular surface. Suppose that all the geodesics of Σ are plane curves. Prove that Σ is contained either in a plane or a sphere.
- 3. (20%) Does there exist a regular surface $F(u,v): (-\frac{\pi}{4},\frac{\pi}{4})\times (0,1)\to \mathbb{R}^3$ with first fundamental form

$$(\mathrm{d}u)^2 + (\cos u)^2 (\mathrm{d}v)^2$$

and second fundamental form

$$(\cos u)^2 (\mathrm{d}u)^2 + (\mathrm{d}v)^2$$
?

Justify your answer.

4. (20% = 10% + 10%) Let α be a positive constant. Consider the cone

$$C_{\alpha} = \{(x, y, \alpha \sqrt{x^2 + y^2}) \in \mathbb{R}^3 : 0 \le x^2 + y^2 \le 1\}$$
.

- (a) Compute the Gaussian curvature of C_{α} .
- (b) Compute the geodesic curvature of $\{(\cos \theta, \sin \theta, \alpha) : 0 \le \theta \le 2\pi\}$ in C_{α} .
- 5. (20%) Suppose that $\Sigma \subset \mathbb{R}^3$ is a closed¹ regular surface whose Gaussian curvature is positive everywhere. Suppose that γ is a simple closed geodesic on Σ , and $\Sigma \setminus \gamma$ has two connected components, A and B.

Let $N: \Sigma \to S^2$ be the Gauss map. Show that N(A) and N(B) have the same area.

¹compact without boundary