科目名稱:近代物理【物理系碩士班】

-作答注意事項-

考試時間:100分鐘

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:近代物理【物理系碩士班】

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

題號:423001

共5頁第1頁

-、選擇題(共 20 題,每題 5 分,滿分 100 分)

- 1. What is the maximum kinetic energy (in eV) of a photoelectron when a surface, whose work function is 5.0 eV, is illuminated by photons whose wavelength is 400 nm?
 - A. 3.1
 - B. -1.9
 - C. 1.9
 - D. 0
 - E. 1.2
- 2. How much energy is in an 89.7-MHz photon of FM radiation?

(*Hint*: The Planck constant is $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{Hz}^{-1} = 4.135 \times 10^{-15} \text{ eV} \cdot \text{Hz}^{-1}$)

- A. 2.2×10^{-33} J
- B. $5.9 \times 10^{-27} \text{ J}$
- C. 7.4×10^{-42} J
- D. 9.5×10^{-26} J
- E. 3.7×10^{-25} J
- 3. The experimental observation(s) below that require(s) a quantum explanation for the photoelectric effect
 - A. is that more photoelectrons are emitted when the light frequency increases.
 - B. is that the maximum kinetic energy of the photoelectrons is related linearly to the frequency of the light.
 - C. is that every metal surface has a work function, a minimum amount of energy needed to free electrons.
 - D. is that the stopping potential measures the kinetic energy of the photoelectrons.
 - E. are all of the above.
- 4. An electron is accelerated through a potential difference of 25 000 V. What is the de Broglie wavelength of the electron (in m)? (Hint: the electron mass is $m_e = 9.11 \times 10^{-31}$ kg and $1 \text{ eV} = 1.602 \times 10^{-19}$ J)
 - A. 7.8×10^{-12}
 - B. 6.8×10^{-12}
 - C. 6.5×10^{-12}
 - D. 5.9×10^{-12}
 - E. 5.5×10^{-12}

科目名稱:近代物理【物理系碩士班】

題號: 423001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第2頁

- 5. Because the factor h on the right side of Heisenberg's uncertainty principle has units of joule-seconds, it suggests that the energy of a system also has uncertainty. The uncertainty in energy depends on the length of the time interval during which a system exists. $\Delta E \Delta t \ge h/4\pi$. Suppose an unstable mass is produced during a high-energy collision such that the uncertainty in its mass is $m_e/100$ ($m_e = 9.11 \times 10^{-31}$ kg). How long will this particle exist?
 - A. 8.1×10^{-19} s
 - B. 2.3×10^{-23} s
 - C. 1.0×10^{15} s
 - D. 1.2×10^{13} s
 - E. 6.4×10^{-20} s
- 6. The expectations value of a function f(x) of x when the wave function depends only on x is given by $\langle f(x) \rangle =$
 - A. $\int_{-\infty}^{+\infty} \sqrt{f(x)} \, \psi(x) dx$.
 - B. $\int_{-\infty}^{+\infty} f(x) \, \psi(x) dx$
 - C. $\int_{-\infty}^{+\infty} \psi^*(x) f(x) \psi(x) dx.$
 - D. $\int_{-\infty}^{+\infty} f(x) \, \psi^*(x) dx \; .$
 - E. $\int_{-\infty}^{+\infty} \psi^*(x) \frac{f^2(x)}{2} \psi(x) dx$
- 7. The graph below shows the value of the probability density $|\psi(x)|^2$ in the region $-3.00 \text{ m} \le x \le +3.00 \text{ m}$. The value of the normalization constant A is

- A. $-\frac{1}{3}$
- C. + 1 /3
- D. $+\frac{1}{3}$.
- E. either $\frac{1}{\sqrt{3}}$ or $+\frac{1}{\sqrt{3}}$.

科目名稱:近代物理【物理系碩士班】

題號: 423001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第3頁

- 8. What is the quantum number n of a particle of mass m confined to a one-dimensional box of length L when its energy is $2 h^2/mL^2$?
 - A. 2
 - B. 4
 - C. 8
 - D. 1
 - E. 16
- 9. The wave function for a particle in a box of length L is given by $\psi(x) = A \sin(\frac{n\pi x}{L})$. If the box extends from x = 0 to x = L, What is the probability of finding the particle between x = 0.60 L and x = 0.70 L?
 - A. 0.05
 - B. 0.20
 - C. 0.25
 - D. 0.10
 - E. The probability is not given.
- 10. A particle in a finite potential well has energy E, as shown below.

The wave function in region I where x < 0 has the form $\psi_1 =$

- A. $\beta e^{\kappa x}$.
- B. $\alpha e^{-\kappa x}$.
- C. $A \sin(kx)$.
- D. $B\cos(kx)$.
- E. $A \sin(kx) + B \cos(kx)$.
- 11. Classically, the concept of "tunneling" is impossible. Why?
 - A. The total energy of a particle is equal to the kinetic and potential energies.
 - B. The velocity of the particle would be negative.
 - C. The kinetic energy of the particle would be negative.
 - D. The kinetic energy must be equal to the potential energy.
 - E. The total energy for the particle would be negative.

科目名稱:近代物理【物理系碩士班】

und but whe \

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第4頁

題號: 423001

12. The ground state energy of a harmonic oscillator is

A.
$$E = \hbar \omega$$
.

B.
$$E = \hbar \omega / 4$$

C.
$$E = (2/3)\hbar\omega$$
.

D.
$$E=0$$
.

E.
$$E = \hbar \omega / 2$$
.

- 13. Rutherford's experiment, in which he fired alpha particles of 7.7-MeV kinetic energy at a thin gold foil, showed that nuclei were very much smaller than the size of an atom because
 - A. some alpha particles passed through the foil undeflected.
 - B. some alpha particles were deflected backwards.
 - C. some alpha particles were captured by the gold nuclei.
 - D. the alpha particles could not get closer than 10^{-10} m to the gold nuclei.
 - E. the alpha particles split into deuterium nuclei when they encountered the gold nuclei.
- 14. An electron in a hydrogen atom makes a transition from the n = 4 to the n = 3 energy state. Determine the energy (in eV) of the emitted photon.
 - A. 0.54
 - B. 1.51
 - C. 0.85
 - D. 0.66
 - E. 10.2
- 15. How fast is the electron moving in the first Bohr orbit?
 - A. 3.3×10^6 m/s
 - B. $5.5 \times 10^{15} \text{ m/s}$
 - C. 4.4×10^6 m/s
 - D. 5.5×10^6 m/s
 - E. 2.2×10^6 m/s
- 16. Zeke says that the magnitude of the orbital angular momentum in the hydrogen atom has the value $L = \ell \hbar$. Ruth says that the maximum magnitude of the projection of the angular momentum along the direction of a constant magnetic field vector $\vec{\mathbf{B}}$ is $\sqrt{\ell(\ell+1)}\hbar$. Which one, if either, is correct, and why?
 - A. Ruth, because the maximum value of L is $\sqrt{\ell(\ell+1)}\hbar$.
 - B. Ruth, because the orbital angular momentum always lines up with a magnetic field so that $\vec{\mathbf{L}}$ has its maximum value along the field.
 - C. Zeke, because the maximum magnitude of $\vec{\mathbf{L}}$ is $L = \ell \hbar$.
 - D. Zeke, because the orbital angular momentum always lines up with a magnetic field so that \vec{L} has its maximum value along the field.
 - E. Neither, because they have interchanged the maximum magnitude of $\vec{\mathbf{L}}$, $\sqrt{\ell(\ell+1)}\hbar$, and $\ell\hbar$, its maximum projection along a magnetic field direction.

科目名稱:近代物理【物理系碩士班】

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

題號: 423001 共5頁第5頁

17. The Pauli exclusion principle states

- A, when an atom has orbitals of equal energy, the maximum number of electrons will have unpaired spins.
- B. there is an inherent uncertainty in the position and momentum of a particle.
- C. no two electrons in the same atom can have the same set of quantum numbers.
- D. when an atom has orbitals of equal energy, the maximum number of electrons will be paired spins.
- E, no two atoms can have the same set of quantum numbers.
- 18. As a spaceship heads directly to Earth at a velocity of 0.8c, it sends a radio signal to Earth. When those radio waves arrive on Earth, their velocity relative to Earth is
 - A. c.
 - B. 0.8c.
 - C. 1.8c.

 - D. $\sqrt{c^2 + v_E^2}$, where v_E is the velocity of the Earth.

 E. $\sqrt{(0.8c)^2 + v_E^2}$, where v_E is the velocity of the Earth.
- 19. The speed of FM waves will be observed to be $c = 2.9979 \times 10^8$ m/s when the antenna emitting the waves is A. at rest relative to the receiving antenna.
 - B. moving to the right of the detecting antenna at 0.5c.
 - C. moving to the left of the detecting antenna at 0.5c.
 - D. moving at 2.9979×10^8 m/s.
 - E. moving as described in (a), (b) or (c) above.
- 20. The half-life of a muon is 2.20 μ s as measured in a stationary reference frame. What is the half-life of the muon (in μ s) when it is moving with a speed of $\nu = 0.800c$?
 - A. 8.13
 - B. 3.67
 - C. 2.75
 - D. 15.8
 - E. 1.32