國立臺北大學 113 學年度碩士班一般入學考試試題

系(所)組別:統計學系

科 目:基礎數學

第1頁 共1頁 □可 ☑不可使用計算機

第一大題 (共50%,計算題請敘述計算過程,無計算過程不給分)

- 1. Let $A = [a_{ij}]$ be an $m \times n$ matrices, $B = [b_{ij}]$ be an $m \times m$ matrices and λ be a given constant. Use Sigma notation (i.e. Σ) and a_{ij} , b_{ij} to represent $trace(\lambda I - A^T B A)$. (10%)
- 2. Let $A = \begin{bmatrix} 1 & -1 & 2 & 1 & 1 \\ 1 & -1 & 2 & 2 & 1 \\ 1 & -1 & 4 & 1 & 1 \\ 1 & -2 & 2 & 1 & 1 \\ -2 & 2 & -4 & -2 & 1 \end{bmatrix}$. Find the inverse of A. (10%)
- 3. Define $T: P_2 \to P_3$ by T(p(x)) = xp(x).
 - (a) Prove that T is linear. (7%)
 - (b) Let $B = \{1 + 2x, 1 x\}$ and $C = \{1, x, x^2 + 1\}$. Determine $[T]_{C \leftarrow B}$, i.e. the matrix of T with respect to bases B and C. (7%)
 - (c) Determine the rank and nullity of T. (6%)
- 4. Let $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ be a basis for R^n and A be a $n \times n$ nonsingular matrix. Please show that $\{A\vec{v}_1, A\vec{v}_2, ..., A\vec{v}_n\}$ is linear independent. (10%)

第二大題 (共 50%)

- 1. Calculate the $\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx$. (15%)
- 2. Let the $f(\theta) = \frac{n!}{(n-x)!x!} \theta^x (1-\theta)^{n-x}$, x < n, be the function of $\theta \in [0,1]$.

Denoted $F(\theta) = \log f(\theta)$, where x and n are the positive, fixed constants. Show that x/n is the unique critical point that is a maximizer of F concerning θ . (15%)

- 3. Find the $\lim_{x \to +\infty} \frac{e^{-(1+x)^{\frac{1}{x}}}}{x}$. (10%)
- 4. Calculate the $\int_0^1 (4x^3 3x^2) dx$ by definition of Riemann sum.

Hint:
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
 and $\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2.(10\%)$

試題隨卷繳交