國立臺灣科技大學 113學年度碩士班招生
 試題

系所組別：1500資訊工程系碩士班

科 目：計算機數學
＜＜515002＞＞

國立臺灣科技大學 113 學年度碩士班招生試題

系所組別：資訊工程系碩士班
科 目：計算機數學

（總分為 100 分；所有試题務必於答案卷内頁依序作答）

1．［15\％］Answer the following questions concerning graph and its associated time complexity issues．Use big－O notation，with n representing the number of nodes，m representing the number of edges，and $\operatorname{deg}(u)$ indicating the number of neighbors of node u in the graph．
（1）（5\％）What are the upper bound and lower bound of m in a connected graph？
（2）（2\％）In the following questions，when comparing graph implementations using Adjacency Matrix and Adjacency List，please enumerate their time complexities for finding an edge and specify which implementation is faster．
（3）（ 2% ）Enumerate their time complexities for finding the degree of node and specify which implementation is faster．
（4）（2\％）Enumerate their time complexities for traversing the graph and specify which implementation is faster．
（5）（2\％）Enumerate their space complexities for representing of a sparse graph and specify which implementation requires less storage．
（6）（2\％）Enumerate their space complexities for representing of a dense graph and specify which implementation requires less storage．

國立臺灣科技大學 113 學年度碩士班招生試題

（總分為 100 分；所有試题務必於答案卷内頁依序作答）

3．［25\％］There are 8 boys and 6 girls in a tennis club．The IDs of boys are \＃1～\＃8， and the IDs of girls are \＃9～\＃14．Please answer the following questions．
（1）（5\％）If these 14 members sit around a round table，what is the probability of＂\＃1 and \＃2 are not adjacent＂？
（2）(6%) How many different ways can these 6 girls be divided into three groups？
（3）（6\％）How many possible ways can we select 3 members from this club without any consecutive IDs？
（4）（8\％）These 14 members are divided into two teams，where Team A has 4 boys and 2 girls，and the remaining 4 boys and 4 girls are in Team B．Suppose each team selects two members for a contest．A random variable X is defined as the total number of boys selected．What is the distribution of this random variable？

4．$[10 \%]$ Let $A=\left(\begin{array}{ll}3 & 0 \\ 4 & 5\end{array}\right)=\left(\begin{array}{cc}\frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}}\end{array}\right)\left(\begin{array}{cc}\sqrt{5} & 0 \\ 0 & 3 \sqrt{5}\end{array}\right)\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ ．
（1）(5%) Write down the matrix that is the best rank－1 approximation of A ．
（2）(5%) Are A＇s eigenvalues $\sqrt{5}$ and $3 \sqrt{5}$ ？

5．［15\％］True or False．
（1）（3\％）Let A be an $m \times n$ matrix，then the matrices $A^{T} A$ and $A A^{T}$ have the same set of nonnegative eigenvalues．
（2）（3\％）Let P be the transition matrix of a Markov chain，then P is orthogonal．
（3）（3\％）Let A be a diagonalizable square matrix，then there is a unique invertible matrix P and a diagonal matrix D such that $A P=P D$ ．
（4）（3\％）Let L be a linear transformation and $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a linearly independent vector set of the domain of L ，then the set $\left\{L\left(x_{1}\right), L\left(x_{2}\right), \ldots, L\left(x_{k}\right)\right\}$ is also linearly independent．
（5）（3\％）Let $A x=b$ be an overdetermined linear system，then it is possible that this linear system has multiple least squares solutions．

6．［5\％］A linear transformation T is defined by $T(x)=x+C$ ，where C is a constant vector．What conclusion can you draw from T ？

7．$[10 \%]$ Answer the following questions．
（1）（5\％）Write down the conditions for an $n \times n$ square matrix A to have zero or one as one of its eigenvalues．
（2）（5\％）Given the aforementioned conditions in（1），compute $\operatorname{det}\left(A^{2}-A\right)$ ， where det denotes the determinant of matrices．

8．［10\％］A linear operator is defined by $T(x)=A x$ ，where A is a 2×2 matrix and $x \in \mathbb{R}^{2}$ ．If T maps every rectangle to some segment，what is the rank of T ？Why？

