試題

系所組別:1500資訊工程系碩士班

科 目:資訊工程概論

<<515001>>

系所組別:資訊工程系碩士班 科 目:資訊工程概論

I. (35%) Multiple choice questions.

1. (5%) Order the following functions by growth rate in increasing order.

 $N, \sqrt{N}, N^{1.5}, N\log N, N^2, N\log(\log N), N\log^2 N, N\log(N^2), 2^N, 2048$

Which is the 5th function in the ordered sequence?

(a) N, (b) \sqrt{N} , (c) $N^{1.5}$, (d) $N \log N$, (e) N^2 , (f) $N \log(\log N)$, (g) $N \log^2 N$, (h) $N \log(N^2)$,

(i) 2^N , (j) 2048

- 2. (5%) Select all the incorrect statements for minimum spanning trees.
 - (a) Every spanning tree of an unweighted graph is a minimum spanning tree.
 - (b) If Kruskal's algorithm is performed on a graph that is not connected, then it finds a minimum spanning forest.
 - (c) If Prim's algorithm is performed on a graph that is not connected, then it finds a minimum spanning forest.
 - (d) To perform Kruskal's algorithm, the graph must be a connected graph.
 - (e) To perform Prim's algorithm, the graph must be a connected graph.
 - (f) Prim's algorithm is a greedy algorithm.
 - (g) Kruskal's algorithm is a greedy algorithm.
- 3. (5%) Select all the correct statements for finding the shortest paths from a given node in a graph.
 - (a) Dijkstra's algorithm can be applied if the graph is undirected without negative weights.
 - (b) Dijkstra's algorithm can be applied if the graph is directed with negative weights but without negative cycles.
 - (c) Dijkstra's algorithm can be applied if the graph is undirected with negative cycles.
 - (d) Bellman-ford algorithm can be applied if the graph is undirected without negative weights.
 - (e) Bellman-ford algorithm can indicate that no solution exists if the graph is directed with negative cycles.
 - (f) The answers must be the same for every graph that can successfully find shortest path solutions using both Dijkstra's and Bellman-ford algorithms.
- 4. (5%) Select all the correct statements about graphs with the depth-first search (DFS) algorithm and the breadth-first search (BFS) algorithm.
 - (a) No directed graph has the same BFS and DFS traversals.
 - (b) Given the BFS and the DFS traversals of a directed graph, we can derive the original direct graph.
 - (c) The DFS algorithm is usually implemented with a stack.
 - (d) The BFS algorithm uses a queue to maintain the nodes that need to be visited.

系所組別:資訊工程系碩士班 科 目:資訊工程概論

5. (5%) The following is the height data for eight students in a class. If we use a sorting algorithm to sort the students from low to high according to their height, which algorithm will get a different student sequence than using tree sorting?

Name	Alpha	Bella	Cock	Duke	Elsa	Fiona	Gina	Hulk
Height (cm)	160	170	185	173	160	153	170	180

- (a) Bubble
- (b) Insertion sort
- (c) Merge sort
- (d) Selection sort
- (e) Heap sort
- 6. (5%) Consider the following segment table:

Segment	Base	Length
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

Which following logical addresses are illegal?

- (a) 0, 430 (b) 1, 10 (c) 2, 450 (d) 3, 300 (e) 4, 100
- 7. (5%) Use operations push, pop, and no-op (i.e., forward the input to the output directly) to rearrange an input sequence. For six numbers 1, 2, 3, 4, 5, 6 entered in that order, which of the following rearrangements is/are not possible?
 - (a) 235146, (b) 325641, (c) 154623

II. (65%) Fill in the following blanks.

- 1. (10%) Consider a two-dimensional array X within a system where each element occupies two bytes. The starting memory address for element X(4, 2) is 1978, and the starting memory address for element X(2, 3) is 1986.
 - (a) The address of X(3, 8) is (A)
 - (b) The number of rows of X is (B)

系所組別:資訊工程系碩士班 科 目:資訊工程概論

2. (5%) There are three types of iterative binary tree traversal (i.e., inorder, preorder, and postorder). Conduct a traversal of the following binary tree using preorder. What is the 5th element of this preorder traversal? (C)

- 3. (5%) If a complete undirected graph has 3,403 distinct edges, there are <u>(D)</u> nodes in this graph.
- 4. (10%) Check the following codes in C.

```
#include <unistd.h>
int value = 5;

int main(){
    pid_t pid;
    pid = fork();

    if(pid == 0){
        value += 10;
        printf("child: value = %d\n", value); // Line A
        return 0;
    }

    else if(pid > 0){
        wait(NULL);
        value -= 3;
        printf("parent: value = %d\n", value); // Line B
        return 0;
    }
}
```

What is the output in Line A? child: value = <u>(E)</u>
What is the output in Line B? parent: value = <u>(F)</u>

系所組別:資訊工程系碩士班 科 目:資訊工程概論

5. (5%) The table given below lists the arrival and burst times of four processes P1, P2, P3 and P4. Assume that SJF non-preemptive scheduling is used. Calculate the average waiting time.

Process	Arrival Time (ms)	Burst Time (ms)	
P1	0	7	
P2	2	4	
P3	4	1	
P4	5	4	

Average waiting time = <u>(G)</u> ms

6. (5%) Suppose that a disk drive has 1,000 cylinders, numbered 0 to 4999. The drive is currently serving a request at cylinder 100. The queue of pending requests is:

39, 150, 160, 18, 55, 90, 184, 58, 38

Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for the disk-scheduling algorithm Shortest Seek Time First (SSTF)? (H)

- 7. (10%) MIPS is a word-addressing instruction set architecture with a 16-bit immediate field. The MIPS branch on equal (BEQ) instruction modifies the \$PC value if the condition is true with branch target address ranges from (next \$PC)+A to (next \$PC)+B. The decimal value of A + B is (I) bytes. On the other hand, RISC-V is a half-word addressing instruction set architecture for compressed ISA extension with a total 12-bit immediate field. The RISC-V branch on equal (BEQ) instruction modifies the \$PC value if the condition is true with branch target address ranges from (next \$PC)+A to (next \$PC)+B. The decimal value of A + B is (J) bytes.
- 8. (5%) "Mini-float" is a low-precision floating-point number representation similar to the IEEE 754 standard except that it is only 8-bit wide. The leftmost bit is still the sign bit, the exponent is 4-bit wide with bias 7 (excess-7 code), and the mantissa (fraction) is only 3-bit long. A hidden leading 1 is assumed. The decimal number (K) can be encoded to a hexadecimal "mini-float" value (55)₁₆.
- 9. (10%) You are designing a 256KB 4-way set associative instruction cache with a 32-bit address and 32 bytes per cache block. There are <u>(L)</u> bits used for the set (index) field and <u>(M)</u> bits used for the tag field.