國立臺灣科技大學 113學年度碩士班招生

試題

系所組別:0430材料科學與工程系碩士班丙組科 目:材料導論

<<504303>>

504303 園立臺灣科技大學 113 學年度碩士班招生試題 系所組別:材料科學與工程系碩士班丙組 科 目:材料導論

(總分為100分;所有試題務必於答案卷內頁依序作答)

- 1. (10%) For the magnetic properties of materials,
 - (1) (4%) Draw the figures of atomic dipole configuration of diamagnetic and paramagnetic materials in the presence of a magnetic field.
 - (2) (6%) Draw a schematic to represent the flux density versus the magnetic field of vacuum, diamagnetic material, and paramagnetic material.
- 2. (10%) For the electrical properties of materials,
 - (1) (5%) Draw a figure to show the dependence of room-temperature carrier mobility on the dopant concentration in silicon.
 - (2) (5%) For one atomic percent of antimony, tin, indium, and cadmium solutes in silver, which alloy exhibits the highest conductivity?
- 3. (10%) For the optical properties of materials,
 - (1) (5%) Calculate the reflectivity of silver at the wavelength of 0.4 μm. The corresponding real and imaginary parts of the refractive index of silver are 0.05 and 2.1, respectively.
 - (2) (5%) Light from a 532-nm laser falls on a photodetector device with a quantum efficiency of 20%.If the laser power in 5 mW, and all liberated carriers reach the electrode, how large is the current?
- 4. (8%) For the thermal properties of materials,
 - (1) (2%) How does the porosity in ceramic materials influence the thermal conductivity?
 - (2) (6%) Explain the dependence of thermal shock resistance parameter on the fracture strength, modulus of elasticity, and thermal expansion coefficient.
- 5. (12%) For plain carbon steels with 0.8 wt% of carbon,
 - (1) (6%) Compare the hardness of fine pearlite, coarse pearlite, and spheroidite.
 - (2) (6%) Compare the boundary area per unit volume in fine pearlite, coarse pearlite and spheroidite.
- 6. (10%) Stiffness, yield strength, ductility, toughness, and hardness are five key mechanical design properties. Please match these five mechanical properties with (1), (2), (3), (4), and (5) below.
 - (1) (2%) Resistance to localized surface deformation
 - (2) (2%) Resistance to elastic deformation
 - (3) (2%) Resistance to plastic deformation
 - (4) (2%) Capacity of energy absorption when it is deformed plastically
 - (5) (2%) Degree of plastic deformation at fracture

504303 園立臺灣科技大學 113 學年度碩士班招生試題 系所組別:材料科學與工程系碩士班丙組 科 目:材料導論

(總分為100分;所有試題務必於答案卷內頁依序作答)

7. (12%) Please fill the answers in the following table about typical stress-strain curves when the strain is increasing. (Please write down both the table and your answers in the answer sheet.)

	Engineering stress (Increase, Decrease, or <u>The same</u>)	True stress (Increase, Decrease, or <u>The same</u>)	Uniform deformation (<u>Yes</u> or <u>No</u>)
Before necking			
After			
necking			

8. (12%) Please fill the answers in the following table about the three major annealing phenomena in coldworked metals. (Please write down both the table and your answers in the answer sheet.)

Typical changes in the properties	Recovery	Recrystallization	Grain growth
Tensile strength			
(Increase, Decrease, or The same)			
Ductility			
(Increase, Decrease, or The same)			

9. (16%) Please draw a typical creep strain (y axis)-time (x axis) profile of a metal including (1) instantaneous deformation, (2) primary creep, (3) secondary creep, and (4) tertiary creep steps. Please further describe the mechanisms for these four phenomena.

