國立中正大學 113 學年度碩士班招生考試

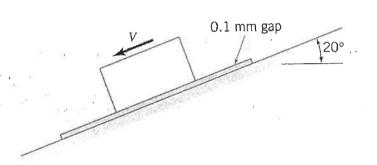
試 題

[第2節]

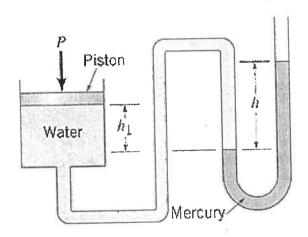
科目名稱	流體力學
条所組別	機械工程學系-丙組

一作答注意事項一

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。


國立中正大學 113 學年度碩士班招生考試試題

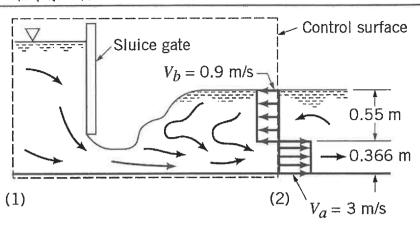
科目名稱:流體力學


本科目共2頁 第1頁

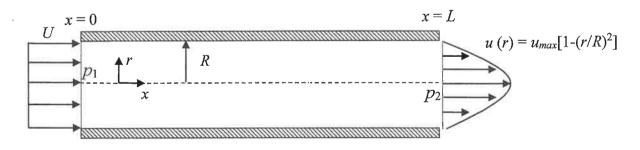
系所組別:機械工程學系-丙組

1. A 10-kg block slides down a smooth inclined surface as shown below. Determine the terminal velocity of the block if the 0.1-mm gap between the block and the surface contains an oil with a dynamic viscosity of 0.35 N-s/m². Assume the velocity distribution in the gap is linear, and the area of the block in contact with the oil is 0.1 m². (20%)

2. A piston having a cross-sectional area of 0.06 m^2 is located in a cylinder containing water as shown in the following figure. An open U-tube manometer is connected to the cylinder as shown. For $h_1 = 60 \text{ mm}$ and h = 100 mm, what is the value of the applied force, P, acting on the piston? The weight of the piston is negligible. The densities of mercury and water are $13,600 \text{ kg/m}^3$ and $1,000 \text{ kg/m}^3$, respectively. (15%)


- 3. The velocity components of u and v of a two-dimensional flow are given by: u = ax and v = by, where a and b are constants. Please calculate the acceleration. (8%)
- 4. In the region just downstream of a sluice gate, the water may develop a reverse flow region as shown in the following figure. The velocity profile is assumed to consist of two unifrom regions, one with velocity $V_a = 3$ m/s and the other with $V_b = 0.9$ m/s. Determine the net flowrate of water across the portion of the control surface at section (2) if the channel is 5 m wide. (7%)

國立中正大學 113 學年度碩士班招生考試試題


科目名稱:流體力學

本科目共2頁第2頁

系所組別:機械工程學系-丙組

- 5. The drag D on a washer-shaped plate placed normally to a stream of fluid can be expressed as $D = f(d_1, d_2, V, \mu, \rho)$, where d_1 is the outer diameter, d_2 is the inner diameter, V is the fluid velocity, μ is the fluid viscosity, and ρ is the fluid density. What dimensionless parameters would you use to organize these data? (20 %) (Use Buckingham Pi theorem)
- 6. Water flows steadily through a pipe of length L and radius R = 3 m. Calculate the uniform inlet velocity, U, if the velocity distribution across the outlet is given by $u(r) = u_{max}[1-(r/R)^2]$ and $u_{max} = 10$ m/s. (15%)

7. Show that whether the following sets of three-dimensional flow cases is incompressible and irrotational or not? (15 %)

(a)
$$u = x + y + z^2$$
; $v = x - y + z$; $w = 2xy + y^2 + 4$ (5%)

(b)
$$u = xyzt$$
; $v = -xyzt^2$; $w = (z^2/2)(xt^2 - yt)$ (5%)

(c)
$$u = y^2 + 2xz$$
; $v = -2yz + x^2yz$; $w = \frac{1}{2}x^2z^2 + x^3y^4$ (5 %)