類組: 電機類 科目: 電路學(3009)

共 3 頁 第 1 頁

計算題應詳列計算過程,無計算過程者不予計分

- 1.In a three-phase balanced delta-delta system, the source has an *abc*-sequence and supplies power to a delta-connected load through the transmission line. The transmission line and the load impedances are $0.5 + j0.2\Omega$ and $6 + j3\Omega$, respectively. If the load current in the delta is $I_{AB} = 10 \angle 30^{\circ}$ Arms. Find the line voltages at the load and the phase voltages at the source. (15%)
- 2. Find C in the circuit in Fig. 2 such that the total load has a power factor of **0.98** leading. (15%)

- 3. A laboratory power source employs a non-linear circuit known as a rectifier to transform the sinusoidal AC input voltage into a DC voltage. This setup assumes that the rectifier operates as an ideal switch, free from turn-on voltage thresholds and resistors. The sinusoidal input $v_{in}(t)$ = A sin $\omega_0 t$ comes from the wall plug, where A=160 V and ω_0 =377 rad/s.
 - A. Find the output voltage of the rectifier $v_s(t)$. (4%)
 - B. Find the average value of $v_s(t)$. (4%)
 - C. Find the fundamental frequency of $v_s(t)$. (4%)
- 4. Consider a linear time-invariant two-port network, its impedance matrix can be represented by $Z = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$. Show the T circuit representation of this two-port network in terms of entries shown in the impedance matrix Z. (8%)

注:背面有試題

類組:電機類 科目:電路學(3009)

共_3_頁第_2頁

5. Determine the Thévenin equivalent circuit for the circuit below. (15%)

6. You know that the currents in the circuit below are i_I = -1.375 A and i_3 = -3.25 A. Determine the values of A and B. (15%)

7. Given a Zeta converter which is operated in continuous conduction mode, derive its input-to-output voltage transfer ratio (V_o/V_{in}) in terms of duty ratio d with volt-second balance principle. (10%)

注:背面有試題

類組:電機類 科目:電路學(3009)

共3 頁第3 頁

- 8. A flyback converter with magnetizing inductance L_m is shown as follows. When it is operated in discontinuous conduction mode and with a duty ratio of d,
 - (a) determine the voltage stresses (V_{ds} and V_d) imposed on switches S_M and D_M , (5%), and
 - (b) determine the input-to-output voltage transfer ratio (V_o/V_i) in terms of d with volt-second balance principle. (5%)

Flyback Converter