國立成功大學 113學年度碩士班招生考試試題

編 號: 109

系 所:工程科學系

科 目: 線性代數

日期:0202

節 次:第3節

備 註:不可使用計算機

編號: 109

國立成功大學 113 學年度碩士班招生考試試題

系 所:工程科學系

考試科目:線性代數

考試日期:0202,節次:3

第1頁,共2頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. (10 %) Determine whether the following statements are true (T) or false (F)? (A reasoning is required.)
 - (1) (2%) If a system of linear equations has two different solutions, it must have infinitely many solutions.
 - (2) (2%) Let $A = \begin{bmatrix} 2 & 6 & 40 \\ 98153 & -105 & 101 \\ 2 & 1 & 7 \end{bmatrix}$, then cofactor $C_{21} = -2$ and $a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23} = 1021$.
 - (3) (2%) If ||u|| = 1, $||v|| = \sqrt{2}$, and $u \cdot v = 1$, then the angle between u and v is $\frac{\pi}{3}$ radians.
 - (4) (2%) Let the vector space V have two basis by $B = \{\sin x, \cos x\}$ and $B' = \{\sin x \cos x, 3\cos x\}$, then the transition matrix from B to B' is $\begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}$.
 - (5) (2%) If the inner product on P_2 is defined by $\langle f, g \rangle = \int_{-2}^{2} f(x)g(x)dx$, then $\langle 2+x, 1-x+x^2 \rangle = \frac{2}{3}$.
- 2. (12%) Consider the following system of linear equations:

$$\begin{cases} x+y+z = a \\ 2x+y+3z = b \\ 3x+4y+2z = c \end{cases}$$
 where a,b,c are constants

- (1) (4%) Determine the a, b, c such that the system has no solution.
- (2) (4%) Determine the a, b, c such that the system has a unique solution.
- (3) (4%) Determine the a, b, c such that the system has infinite solutions.

3. (14%) Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 5 \\ 3 & 4 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, please

- (1) (7%) find the LU factorization of the matrix A.
- (2) (7%) find the QR factorization of the matrix B.

編號: 109

國立成功大學 113 學年度碩士班招生考試試題

系 所:工程科學系

考試科目:線性代數

考試日期:0202,節次:3

第2頁,共2頁

4. (20%) Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ -2 & 0 & 3 & -3 \end{bmatrix}$$
.

- (1) (4%) Find the rank of A.
- (2) (4%) Find the nullity of A.
- (3) (4%) Find the nullity of A^T .
- (4) (4%) Find the basis for the column space of A.
- (5) (4%) Find the basis for the null space of A.
- 5. (14%) Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation such that

$$T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\-1\\-2\\0\end{bmatrix}, \ T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\\-3\\1\end{bmatrix}, \ T\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\2\\-8\\2\end{bmatrix}.$$

- (1) (8%) Find $T \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ and $T \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$.
- (2) (6%) Is Tone-to-one? Justify your answer.

6. (14%) For the linear operator
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
, $L(\mathbf{x}) = \begin{bmatrix} -x_1 + x_3 \\ -2x_2 \\ x_1 + 2x_3 \end{bmatrix}$, please find

- (1) (7%) ker(L)
- (2) (7%) L(S) for $S = span\{e_1, e_2\}$, where $e_1 = [1 \ 0 \ 0]^T$ and $e_2 = [1 \ 0 \ 0]^T$.

7. (16%) Consider the matrix
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & -1 & -3 \end{bmatrix}$$

- (1) (4%) Find the eigenvalues of A, and its corresponding eigenvectors.
- (2) (4%) Find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.
- (3) (4%) Find the unique solution of the differential equation $\frac{dX(t)}{dt} = AX(t)$, $t \ge 0$ with the initial

condition
$$X(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
.

(4) (4%) What is the behavior of the above differential equation? Will it be converged? or diverged?