國立成功大學 113學年度碩士班招生考試試題

編 號: 73

系 所: 化學工程學系

科 目: 化工熱力學

日 期: 0201

節 次:第2節

備 註:可使用計算機

編號: 73

國立成功大學 113 學年度碩士班招生考試試題

系 所: 化學工程學系

考試科目: 化工熱力學

考試日期:0201,節次:2

第1頁,共3頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 1 (13%)

Internal pressure can be used to measure the change in internal energy of a system when it expands or contracts at constant temperature, $(\frac{\partial U}{\partial V})_T$. (U and V are the molar properties)

- (a) Please show the internal pressure of a gas obeying ideal gas behavior or van der Waals equation, $\left(P + \frac{a}{V^2}\right)(V b) = RT$. (5%)
- (b) A gas is assumed to obey the van der Waals equation and these two parameters, $a = 1.4 \, (\frac{atm \times dm^6}{mol^2})$ and $b = 0.04 \, (\frac{dm^3}{mol})$. If 5 mol of this gas expands reversibly isothermally at 300 K from an initial volume of 2.5 dm³ to a final volume of 10 dm³, please calculate the changes in heat (Q), work (W), internal energy (U), and

Problem 2 (9%)

A liquid with a boiling point at 450 K and 1 atm. This liquid can be superheated to 465 K at 1 atm and then changing to vapor at the same temperature and pressure. Is this process spontaneous?

PS:
$$\Delta H_{vap} = 45.6 \frac{kJ}{mol}$$
 at 450 K and 1 atm. $C_{p,l} = 78 \frac{J}{K-mol}$ and $C_{p,g} = 35 \frac{J}{K-mol}$. (9 %)

Problem 3 (12 %)

Calculate the maximum temperature of complete combustion of ethylene at 298 K with:

(a) The theoretical amount of air at 298 K.

enthalpy (H) during the expansion process.

(6%)

(8%)

(b) 20% excess air at 298 K.

(6%)

,	ΔΗ _f ⁰ (298K) (kJ/mol)	C _p ⁰	
		A (J/K-mol)	10³B (J/K²-mol)
C _z H ₄ (g)	52.5	11.8	119.7
H ₂ O(g)	-241.8	30.5	10.3
H ₂ O(l)	-285.8	75.5	0
CO ₂ (g)	-393.5	44.2	8.8
O ₂ (g)	0	30.0	4.2
N ₂ (g)	0	28.6	3.8

PS: $C_p^0 = A + BT$ is used over the working temperature region

 C_p^0 and ΔH_f^0 mean the heat capacity and enthalpy at standard state (1 atm and 298 K)

編號: 73

國立成功大學 113 學年度碩士班招生考試試題

系 所: 化學工程學系

考試科目: 化工熱力學

第2頁,共3頁

Problem 4 (20%)

The equation of state for the van der Waals (vdW) fluid is given as $\left(P + \frac{a}{v^2}\right) \cdot (V - b) = RT$, where P, V, and T are the pressure, molar volume and temperature, respectively, as well as a and b are constants specific to this vdW fluid.

(1) Please calculate the residual internal energy of this vdW fluid, U^R .

(8%)

考試日期:0201,節次:2

(2) Please estimate the residual enthalpy of this vdW fluid, H^R .

(8%)

(3) Please compute $\left(\frac{\partial c_v}{\partial V}\right)_T$ of this vdW fluid.

(4%)

Please clearly state all assumptions you made leading to your answers. Express U^R , H^R and $\left(\frac{\partial \mathcal{C}_v}{\partial V}\right)_T$ with proper thermodynamic variables. In your answers to (1) and (2), you could use C_P^R and C_V^R for isobaric and isochoric residual heat capacities, respectively.

Problem 5 (13%)

One mole of an ideal gas with $C_P = (7/2)$ R and $C_V = (5/2)$ R is compressed adiabatically in a piston-cylinder device from 2 bar and 300 K to 8 bar. The process is irreversible and requires 40% more than a reversible, adiabatic compression from the same state to the same final state on the same piston-cylinder device. Please calculate the final temperature and the entropy change of the gas.

Problem 6 (6%)

 G^{E}/RT , $\ln \gamma_{1}$, $\ln \gamma_{2}$ must intersect at a point. If this were the case, please prove that it is real.

Problem 7 (8%)

Determine the following statements are "True" or "False".

(1)
$$x_1\overline{G}_1 + x_2\overline{G}_2 = G$$
, therefore $x_1\left(\frac{\partial \overline{G}_1}{\partial T}\right)_{P,x} + x_2\left(\frac{\partial \overline{G}_2}{\partial T}\right)_{P,x} = \left(\frac{\partial G}{\partial T}\right)_{P,x}$ Hence, $-x_1\overline{S}_1 - x_2\overline{S}_2 = -S$

(2) When $x_2 \rightarrow 1$, the slope of $\ln \gamma_1 \text{ vs } x_1 \text{ approaches } 0$.

背面尚有試題

編號: 73

國立成功大學 113 學年度碩士班招生考試試題

系 所: 化學工程學系

考試科目: 化工熱力學

考試日期:0201,節次:2

第3頁,共3頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 8 (5%)

Which figure (Figure (b) or Figure (c)) is related to Figure (a)? Please choose.

Problem 9 (14%)

- (a) Please choose two from the sections (a), (b), (c), (d), (e), (f) which are related to Fig. 1.
- (8%)(6%)

(b) Please explain the reason on your choice.

Fig. 1 Pxy diagram for vapor/liquid equilibrium of a mixed-solvent system at 50°C.

Fig. 2 xy diagram for different mixedsolvent system at 1 bar.