國立成功大學 113學年度碩士班招生考試試題

編 號: 70

系 所:機械工程學系

科 目:動力學

日 期: 0201

節 次:第2節

備 註:可使用計算機

編號: 70

國立成功大學 113 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:動力學 考試日期:0201,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. The figure illustrates a commonly used quick-return mechanism which produces a slow cutting stroke of the tool (attached to D) and a rapid return stroke. If the driving crank OA is turning at the constant rate $\dot{\theta} = 1$ rad/s, determine the magnitude of the velocity of point B for the instant when $\theta = 30^{\circ}$. (20%)

Prob. 1

2. The flexible band F is attached at E to the rotating sector and leads over the guide pulley G. Determine the angular velocities of links AB and BD for the position shown if the band has a speed of 4 m/s. (20%)

Prob. 2

編號: 70

國立成功大學 113 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:動力學

第2頁,共2頁

考試日期:0201,節次:2

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 3. (20%) The bullet with a mass of $m = 100 \,\mathrm{g}$ traveling at $v_1 = 810 \,\mathrm{m/s}$ strikes and becomes embedded in the block with a mass of $M = 8 \,\mathrm{kg}$. The block is initially stationary. After strike, the block slides along the horizontal guide. Calculate the velocity v_2 of the block immediately after the strike. If the kinetic friction coefficient between the block and the guider is $\mu = 0.5$, calculate the sliding distance d of the block from the strike to the time that the block stops.

- 5. (20%) The L-shaped crank AB pivoted at O is connected with the mass, spring and damper, as shown in the figure. Neglect the mass of the crank AB and assume small oscillations about the equilibrium position shown.
 - Derive the equation of motion in terms of the displacement x, mass m, spring constant k, damper c and the two arm lengths L₁ and L₂.
 - (2) Determine the natural frequency (in Hz) and the maximum arm length L_2 of the crank such that the vibration system is under damping if m = 0.25 kg, k = 40000 N/m, c = 50 N-s/m, $L_1 = 100$ mm.

Prob. 3

Prob. 5