國立成功大學 113學年度碩士班招生考試試題

編 號: 141

系 所:環境工程學系

科 目:流體力學

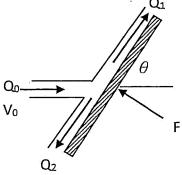
日 期: 0201

節 次:第2節

備 註:不可使用計算機

國立成功大學 113 學年度碩士班招生考試試題

編號: 141

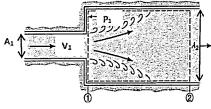

所:環境工程學系

考試科目:流體力學

考試日期:0201,節次:2

第1頁,共1頁

- ※ 考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. A water jet (density = ρ) issues from a long slot and strikes against a smooth inclined flat plate which is inclined at an angle (θ) as shown (no friction loss in the system)
- (a) Calculate the Q_1 and Q_2 (expressed as Q_0 and θ) (10%)
- (b) Calculate the force (F) required to hold the plate in stationary (expressed as Q_0 , V_0 and θ) (10%)



2. A fluid flows through a pipe (radius = R) in a laminar flow and its velocity distribution is shown as follow.

$$u = u_{\text{max}} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$

Please calculate

- (1) u_{ave} (average velocity) and α (kinetic energy correction factor) (10%)
- (2) β (momentum correction factor) (10%)
- 3. A laminar boundary layer velocity profile is approximated by $u/U = 2(y/\delta) 2(y/\delta)^3 + (y/\delta)^4$ for $y \le \delta$, and u = U for $y > \delta$. (a) show that this profile satisfies the appropriate boundary conditions; (b) use the momentum integral equation to determine the boundary layer thickness, $\delta = \delta(x)$ (20%)
- 4. The sudden enlargement is shown in the following figure (the control volume is indicated by the dashed line). The pressure acting at section (1) is considered uniform with value P₁. Please derive the friction loss (20%)

5. A 3-m-wide, 8-m-high rectangular gate is located at the end of rectangular passage that is connected to a large open tank filled with water, as shown below. The gate is hinged at its bottom and held closed by a horizontal force (F_H), located at the center of the gate. The maximum value of F_H is 3500 kN. (a) Determine the maximum water depth (h) above the center of the gate that can exist without the gate opening. (b) How about h if the gate is hinged at the top? (20%)