國立成功大學 113學年度碩士班招生考試試題

編 號: 138

系 所:環境工程學系

科 目:衛生工程

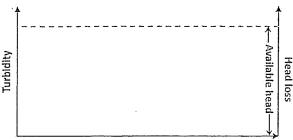
日 期: 0201

節 次:第1節

備 註:可使用計算機

編號: 138

國立成功大學 113 學年度碩士班招生考試試題


系 所:環境工程學系

考試科目:衛生工程

考試日期:0201,節次:1

第1頁,共2頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Answer the following questions or explain the terms.
- (1) What is a master plan? Briefly describe the content. (10%)
- (2) Write the reaction equations if soda-lime chemical precipitation methods are used to remove hardness $(Ca^{2+} \text{ and } Mg^{2+})$ from water. (5%)
- (3) Compare the advantages and disadvantages of disinfection using free chlorine vs. combined chlorine.(5%)
- (4) Compare the advantages and disadvantages of tunneling work (as 潛盾施工法) and open cut work (明挖施工法). (5%)
- (5) Describe four types of sedimentation and their characteristics. (5%)
- (6) Sketch the profiles (操作曲線) of head loss and turbidity in optimal filtration operation. Please label the profiles (請標示出曲線) (5%)

Filtration time

2. The following data have been obtained in a BOD test that is made to determine how well a wastewater treatment plant is operating. What percentage of the BOD is being removed by this treatment plant, assuming that this particular BOD test could measure 100% of the pollutants in the wastewater? If this is a secondary treatment plant that is supposed to remove 85% of the BOD, would you say it is operating properly? (15%).

	Initial D.O.	Final D.O.	Volume of	Volume of dilution
	(mg/L)	(mg/L)	wastewater (mL)	water (mL)
Untreated sewage	6.0	2.0	5	295
Treated sewage	9.0	4.0	15	285

- 3. A well is producing from a confined aquifer at steady state. An observation well 100 m away from the pumping well shows a drawdown, s₂ of 5 m, while an observation well 20 m away from the pumping well shows a drawdown, s₁ of 16 m. (1) If the well produces at a rate Q = 20 m³/min, what is the transmissivity (m²/min) of the aquifer? (2) In the case where the pumping rate is unknown, what would be the drawdown, s_w at the pumping well of radius 0.2 m? (20%)
- 4. Treatment of a water supply requires 60 mg/L of FeCl₃ (molecular weight of 162 g/mole) as a coagulant. The natural alkalinity of the water is 40 mg/L as CaCO₃. Based on the theoretical chemical reactions, what dosage of lime as CaO (molecular weight of 56 g/mole) is required to react with FeCl₃ after the natural alkalinity is consumed? (10%)
- 5. What is the corresponding overflow rate (express unit of m/day and rounding to integer 四捨五入到整數) that can just completely remove coagulated particles with a size of 0.00075 m and density of 1001 kg/m³? ($\rho_w = 1000 \text{ kg/m}^3$, $\mu = 0.89 \times 10^{-3} \text{ kg/m·s}$ at 25°C, $g = 9.8 \text{ m/s}^2$) If the flow rate is 6,000 CMD, retention time is 3 hours, design the sedimentation tank. (10%)

國立成功大學 113 學年度碩士班招生考試試題

編號: 138

所:環境工程學系

考試科目:衛生工程

衛生工程 考試日期:0201,節次:1

第2頁,共2頁

6. The results of a chlorine demand test on a raw water at 20°C are given in the following table.

GI-	Chlorine	Residual	
Sample	dosage (mg/L)	chlorine (mg/L)	
1 *	0.20	0.19	
2	0.40	0.37	
3.	0.60	0.51	
4	0.80	0.50	
5	1.00	0.20	
6	1.20	0.40	
7	1.40	0.60	
8	1.60	0.80	

(a) Sketch the breakpoint chlorination curve. (5%)

(b) What is the breakpoint chlorine dosage? Indicate the dosage on the plot. (2%)

(c) What is the chlorine demand at a chlorine dosage of 1.20 mg/L? Indicate the value on the plot.(3%)