國立成功大學

113學年度碩士班招生考試試題

編 號: 44

系 所: 化學系

科 目:物理化學

日 期: 0202

節 次:第1節

備 註:不可使用計算機

編號: 44

國立成功大學 113 學年度碩士班招生考試試題

系 所:化學系

考試科目:物理化學

考試日期:0202,節次:1

第1頁,共3頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 一、計算與簡答題:40分;每題5分(只需寫答案,答案正確才予計分,氣體常數以R表示,自然對數 ln 值不必算出)
- (1). Calculate ΔS for cooling 2.0 mol of an ideal monatomic gas from 27°C to 327°C at constant volume.
- (2). What are the criteria for a spontaneous chemical reaction at all temperature?
- (3). Given a reaction: $HA \rightarrow H^+ + A^ K_a = 1 \times 10^{-5}$ at 25°C; What is ΔG° at 25°C?
- (4). The reaction: $2A + B \rightarrow C$ has the following proposed mechanism.

Step 1: $A + B \implies D$ (fast equilibrium)

Step 2: $D + B \rightarrow E$ (very slow)

Step 3: $E + A \rightarrow C + B$ fast

What should be the rate law of formation of C?

- (5). For a chemical reaction with rate constant of 50 M⁻¹s⁻¹, please calculate the half-life (t_{1/2}) at initial concentration of 0.2 M.
- (6). For a particle in a cubic box $(L_x = L_y = L_z)$, how many degenerate energy levels have energy equal to $14 \text{ h}^2/8 \text{ mL}^2$?

CN-

(7). Using the following data reactions:

$$\Delta H^{\circ}$$
 (kJ)

b

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ a

 $H_2(g) \rightarrow 2H(g)$

 $Cl_2(g) \rightarrow 2Cl(g)$

Please use the a, b, c values to give the energy of an H-Cl bond.

(8). Which of the following molecules or ions are paramagnetic? (全對才給分)

 O_2 $O_2^ B_2$ C_2 N_2 F_2

國立成功大學 113 學年度碩士班招生考試試題

編號: 44

系 所:化學系

考試科目:物理化學

第2頁,共3頁

考試日期:0202,節次:1

二、證明與計算題:60分;每題10分(需有計算和推導過程才予計分)

- 1. (a). Please give the phenomenological equation for energy flux. (3 %)
 - (b). Derive an equation for calculating the thermodynamic force of a concentration gradient. (4 %)
 - (c). Please calculate the $\partial c/\partial t$ values of a concentration gradient of $c = c_0 x$. (3 %)
- 2. Consider the formation and decay of an excited singlet state:

Adsorption:
$$S + h\nu_i \longrightarrow S^*$$
 $v_{abs} = I_{abs}$

Fluorescence: $S^* \longrightarrow S + h\nu_f$ $v_f = k_f[S^*]$

Internal conversion: $S^* \longrightarrow S$ $v_{IC} = k_{IC}[S^*]$

Intersystem crossing: $S^* \longrightarrow T^*$ $v_{ISC} = k_{ISC}[S^*]$

Quenching: $S^* + Q \longrightarrow S + Q$; $v = k_Q[Q][S^*]$, Q: quencher

How to use the intensities of fluorescence (I_f) in the presence of the quencher at different concentration and fluorescence (I_f^0) in the absence of quencher to obtain the quenching rate constant k_Q .

$$(\tau_0 \text{ is known and } \tau_0 = 1/(k_f + k_{IC} + k_{ISC}))$$
 (10 %)

- 3. (a) When two electrons in an atom occupy an orbital (ψ) , please write down the total wavefunction for the two electrons. Why the electrons must be paired? (4 %)
 - (b). Is $p_y \rightarrow p_z$ an allowed electric dipole transition in a molecule with C_{2v} symmetry? (6 %)

C_{2v} (2mm)	E	C_2	$\sigma_{\nu}(xz)$	σ' _v		
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1.	R_z	xy
B_1	1	-1	1	-1	x, R_{ν}	XZ
B_2	1	-1	-1	1	y, R_x	γz

- 4. (a). The energy separation between $m_I = +\frac{1}{2}$ and $m_I = -\frac{1}{2}$ states of spin- $\frac{1}{2}$ nuclei ($I = \frac{1}{2}$) in a magnetic field B_0 is $\gamma \hbar B_0$. Please prove the absorption intensity is proportional to $\frac{\gamma \hbar B_0/kT}{2}$ (5 %)
 - (b). It is known that the local magnetic field is

$$B_{loc} = \frac{-\gamma \hbar \mu_0 (1 - 3\cos^2\theta) m_{\underline{I}}}{4\pi R^3}$$

Please use this equation to explain why the NMR signal of the molecules in solid state is very broad. How to reduce the linewidths of the solid-state NMR spectrum? (5 %)

國立成功大學 113 學年度碩士班招生考試試題

編號: 44

系 所:化學系

考試科目:物理化學

第3頁,共3頁

考試日期:0202,節次:1

5.	(a). What is Gibbs-Duhem equation? (3 %) (b). Give an equation to explain the relation between $\Delta_r G$ and chemical potentials of reactants and products.						
	(2%)						
	(c). At constant pressure and temperature, prove the $-\nu FE = \Delta_r G$. (F: Faraday constant, 5 %)						
6.	(a). Please derive the Phase rule: $F = C - P + 2$; and calculate the number of the intensive variables in a						

(b). Draw the C_p vs. Temperature diagrams to explain the first- and second-order phase transitions. (4 %)

system with two components in a solid-liquid phase. (6 %)