國立成功大學

113學年度碩士班招生考試試題

編 號: 37

系 所:物理學系

科 目:物理數學

日 期: 0202

節 次:第1節

備 註:不可使用計算機

國立成功大學 113 學年度碩士班招生考試試題

系 所:物理學系考試科目:物理數學

考試日期:0202,節次:1

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Estimate gradient ∇ of the function $\varphi(x, y, z)$ [10 points]

$$\varphi(x, y, z) = \frac{z x^2}{x^2 + y^2 + z^2}$$

- 2. Solve y(x) for 1st-order ordinary differential equation (ODE) $(1+y^2)dx + xydy = 0 \text{ with } y(3) = 0 \text{ [10 points]}$
- 3. Solve both complementary function $y_c(x)$ and particular function $y_p(x)$ of following 2^{nd} -linear ODEs: (a) $y'' + 3y' + 2y = e^{3x}$ [10 points], (b) y'' + 3y' + 2y = 1 + x [10 points]
- 4. (a) Find eigenvalue and eigenvectors of the matrix $\begin{bmatrix} 1 & 3 & 2+i \\ 3 & 2 & -2 \\ 2-i & -2 & 2 \end{bmatrix}$. (b) Confirm its eigenvectors are mutually orthogonal. (c) Is this matrix symmetric or a Hermitian? Why? (d) Construct a unitary matrix U such that U[†]HU = Λ , where Λ is a real diagonal matrix. [24 points, each part is 6 points]
- 5. (a) Show following equations can be represented as the combination of a matrix and vectors [3 points]. (b) Find the equations have solutions only if $\eta = 1$ or 2 [9 points]

$$x + y + z = 1,$$

 $x + 2y + 4z = \eta,$
 $x + 4y + 10z = \eta^{2}.$

- 6. Evaluate $\oint (x \sin x y) dx + (x y^2) dy$ of a closed counterclockwise curve of a triangle with points (0,0), (1,1) and (0,2). [10 points]
- 7. For f(x) as following

- (a) What is the periodicity λ of f(x)? [4 points]
- (b) What are coefficients a_0 , a_n , b_n for n = 1, 2,... if we write f(x) in its Fourier Series [10 points]

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{2n\pi x}{\lambda} + b_n \sin \frac{2n\pi x}{\lambda}$$