國立成功大學 113學年度碩士班招生考試試題

編 號: 225

系 所:統計學系

科 目:數學

日期:0202

節 次:第1節

備 註:不可使用計算機

編號: 225

國立成功大學 113 學年度碩士班招生考試試題

系 所:統計學系

考試科目:數學

考試日期:0202,節次:1

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

I. 簡答題(請依題號於第一頁依序寫下答案,不用計算過程)

1. (10%) The probability density function of a normal distribution with mean μ and standard deviation σ is given by the formula

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Suppose a sample has a true weight of 100 grams, and a measurement error, following a normal distribution with a mean of 0 and a standard deviation of $1/\sqrt{2}$ grams, is introduced. Given that $\sqrt{\pi} = 1.772$, find the approximate probability that the measured weight falls between 100 and 101 grams correct to two decimal places.

2. (10%) Determine the volume of the solid bounded by the surface defined by the equation

$$(x^2 + y^2 + z^2)^2 - 2z(x^2 + y^2) = 0.$$

3. (10%, 5% for each) Evaluate the following integrals

$$(a) \int_0^{\pi/4} \sec^3 \theta \ d\theta$$

(b)
$$\int_0^1 \int_y^1 (1+x^2+y^2)^{-\frac{3}{2}} dx dy$$

4. (10%) Find the specific function f(x) satisfying the following condition:

$$f(x) = 1 + \int_0^x \frac{t \sin(t)}{f^2(t)} dt.$$

5. (10%, 5% for each) Evaluate

(a)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1^2}} + \frac{1}{\sqrt{n^2 + 2^2}} + \dots + \frac{1}{\sqrt{n^2 + n^2}} \right)$$

(b)
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right)$$

編號: 225

國立成功大學 113 學年度碩士班招生考試試題

系 所:統計學系

考試科目:數學

考試日期:0202,節次:1

第2頁,共2頁

- 6. (10%, 2% for each) True or False (n and m are positive integers)
- (a) Let $A \in M_{n \times n}(\mathbb{R})$. If $\sqrt{2}$ is an eigenvalue value of A, then $\lim_{k \to \infty} A^k$ does not exist.
- (b) Let T be the transformation $T: P(\mathbb{R}) \to P(\mathbb{R})$ given by

$$T(f(x)) = \int_0^x f(t)dt.$$

Then, T is linear, one-to-one, and onto. $(P(\mathbb{R})$ is the set of all polynomials with coefficients from \mathbb{R} .)

- (c) Let $A \in M_{m \times n}(\mathbb{R})$. If the rank of A is zero, then A is the zero matrix.
- (d) Every orthonormal set is linearly independent.
- (e) Let $A \in M_{n \times n}(\mathbb{R})$. If $A^3 = A$, then A is diagonalizable.

Ⅱ. 證明題 (請依題號從第二頁開始寫下答案,詳列過程)

- 1. Let A and B be matrices in $M_{n\times n}(\mathbb{R})$, where n is a positive integer.
- (a) (10%) Prove that if A and B are similar, then A and B have the same eigenvalues.
- (b) (15%) Prove that if A and B are symmetric positive definite, then

$$\det(A) \det(B) \le \left(\frac{\operatorname{trace}(AB)}{n}\right)^n$$
.

2. (15%) Let T be a linear transformation $T: V_1 \to V_2$ where V_1 and V_2 are vector spaces. Prove that T is one-to-one if and only if the null space of T is $\{0\}$.