國立成功大學 113學年度碩士班招生考試試題

編 號: 226

系 所:統計學系

科 目: 數理統計

日期:0202

節 次:第2節

備 註:不可使用計算機

編號: 226

國立成功大學 113 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0202,節次:2

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 1. (10%) Suppose that independent random sample of size n from two normal populations with the known variances σ_1^2 and σ_2^2 are to be used to test the null hypothesis $\delta = \mu_1 - \mu_2$ against the alternative hypothesis $\delta' = \mu_1 - \mu_2$ and that the probabilities of type I and type II errors are to have the preassigned value α and β , where $0 < \alpha < 1$ and $0 < \beta < 1$. Find the size of the sample to meet the requirement.

2. Let $Y_1, ..., Y_n$ be independent and identically distributed random variables with discrete probability function given by

_	•	У	,
· _	1	2	3
$p(y \theta)$	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

where $0 < \theta < 1$. Let N_i denote the number of observations equal to i for i = 1, 2, 3.

- a. (5%) Derive the likelihood function $L(\theta)$ as function of N_i , for i=1,2,3.
- b. (10%) Find the most powerful test for testing H_0 : $\theta = \theta_0$ versus H_1 : $\theta = \theta_1$, where $\theta_0 < \theta_1$. Show that your test specifies that H_0 be rejected for certain values of $2N_1 + N_2$.
- c. (5%) How do you determine the value of k so that the test has nominal level α ? You need not do the actual computation. A clear description of how to determine k is adequate.
- d. (5%) Is the test derived in parts (a)-(c) uniformly most powerful for testing H_0 : $\theta = \theta_0$ versus H_1 : $\theta = \theta_1$? Why or why not?
- 3. Suppose that a random sample of length-of-life measurements, Y_1, \dots, Y_n , is to be taken of components whose length of life has an exponential distribution with a mean θ . It is frequently of interest to estimate

 $\bar{F}(t) = 1 - F(t),$

the reliability at time t of such a component.

- a. (5%) For any fixed value of t, find the MLE of $\overline{F}(t)$.
- b. (10%) Find the minimum-variance unbiased estimator of $\bar{F}(t)$.
- 4. Consider a random sample $Y_1, ... Y_n$ from a Poisson distribution with a mean θ . Suppose that the prior distribution of θ is from a gamma distribution, $\Gamma(\alpha, \beta)$, where α is the shape parameter and β the rate (inverse of scale) parameter and α and β are known.
 - a. (10%) Find the posterior mean of θ .
 - b. (10%) Find posterior predictive distribution, $p(\tilde{y}|y_1,...y_n)$, where \tilde{y} is the predictive value and $y_1,...y_n$ are observed values.

編號: 226

國立成功大學 113 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0202,節次:2

第2頁,共2頁

- 5. Suppose that $X_1, ..., X_n$ are independent and identically distributed Poisson (λ) random variables.
 - a. (10%) Find the maximum likelihood (ML) estimator, and an asymptotic normal distribution for the estimator of $\exp\{-\lambda\}$.
 - b. Suppose that, rather than observing the random variables in (a) precisely, only the events $X_i=0 \ {
 m or} \ X_i>0$,

for i = 1, ..., n are observed.

- I. (10%) Find the ML estimator of λ under this new observation scheme.
- II. (10%) In this new scheme, when does the ML estimator not exist (at a finite value in the parameter space)? Justify your answer.