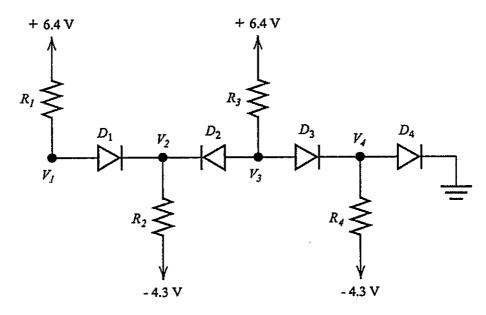
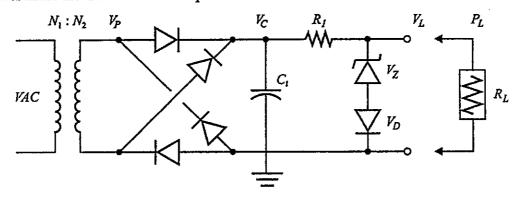
國立臺灣大學 113 學年度碩士班招生考試試題

科目: 電子學(B)

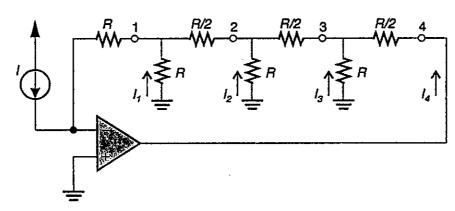
265


共2頁之第1頁

題號:265


節次: 1

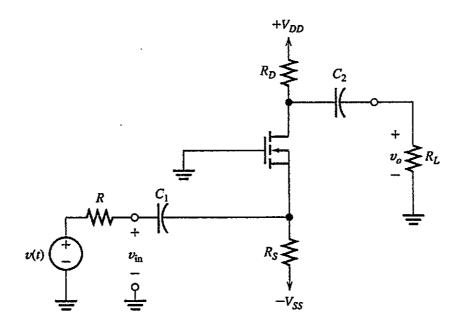
題號:


1. (20%) Determine node voltages V_1 , V_2 , V_3 , V_4 and the currents through each of the diodes for $R_1 = 4.0 \text{ k}\Omega$, $R_2 = R_3 = 2.5 \text{ k}\Omega$ and $R_4 = 5.0 \text{ k}\Omega$. Assume all the diodes follow common voltage drop (CVD) model.

- 2. (15%) For the full-wave rectifier (FWR) topology shown in the figure, please choose component values that will support a Zener diode regulated 240 mW, 6V application from a 120 V, 60 Hz power tap. Transformer turns ratio $N_{12} = 12:1$. Assume all diodes are Si power diodes ($V_D = 0.8 \text{ V}$).
 - (a) Determine V_C and V_P .
 - (b) If $V_C(\min) = 8.0 V$ with the load connected, what values of R_1 and C_1 are required, assuming that the current through the Zener diode approaches zero when V_C approaches $V_C(\min)$.
 - (c) What average power must the Zener diode dissipate when the load is not connected?

- 3. (20%) The circuit is shown in the figure. Assume the OP amplifier is ideal. Please answer the questions in terms of the resistance R and the input current I.
 - (a) Find the resistances looking into node 1, R_1 ; node 2, R_2 ; node 3, R_3 ; and node 4, R_4 .
 - (b) Find the currents I_1 , I_2 , I_3 , and I_4 .
 - (c) Find the voltages at nodes 1, 2, 3, and 4, that is, V_1 , V_2 , V_3 , and V_4 .

見背面


國立臺灣大學 113 學年度碩士班招生考試試題

題號: 265

265 電子學(B)

節次: 共2頁之第2頁

4. (20%) Consider the common-gate amplifier shown in the figure. The MOSFET has $K = 1.5 \, mA/V^2$ and $V_{to} = 1 \, \text{V}$, $r_d = 1 \, \text{V}$ ∞ . The supply voltages are $V_{DD}=15$ V and $V_{SS}=15$ V. The resistances are $R_S=3$ k Ω , $R_L=10$ k Ω , and $R_D=3$ k Ω . Determine the Q point and the transconductance of the device, g_m . Determine the input resistance and the voltage gain.

- 5. (25%) Consider the common-emitter amplifier of the figure.
 - (a) Draw the dc circuit and find I_{CQ} . Find the resistance, r_{π} , in the small-signal equivalent circuit. Then calculate values for voltage gain A_{ν} , the voltage gain in an open circuit $A_{\nu o}$, input impedance Z_{in} , the current gain A_i , the power gain G, and output impedance Z_o . Assume that the circuit is operating in the midband region for which the coupling and the bypass capacitors are short circuits.
 - (b) Repeat (a) if all resistance values, including R_S and R_L , are increased in value by a factor of 100. Prepare a table comparing the results for the low-impedance amplifier with those for the high-impedance amplifier.

試題隨卷繳回