題號: 192

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(H)

節次: 6

共2頁之第1頁

題號:192

1. Find the general solution to the following O.D.E. (20%):

(i)
$$y'' - 3y' + 2y - x - e^{-x} = 0$$

(ii) $y' = -\left(\frac{y}{x}\right) + x - 5$

2.

$$m\frac{d^2y}{dx^2} + kz = F_0 \cos \omega t$$

,where F_0 is the forcing coefficient and ω is the forcing frequency. What is the motion of the mass with time, z(t)? (15%)

3. Given are the expressions for the collision frequency in the continuum regime $(\beta_c(u, v))$ and the free molecular regime $(\beta_{FM}(u, v))$:

For the continuum regime:

$$\beta_c(u,v) = \frac{2k_BT}{3u} \left(\frac{1}{u^{1/3}} + \frac{1}{v^{1/3}}\right) \left(u^{1/3} + v^{1/3}\right)$$

For the free molecular regime:

$$\beta_{FM}(u,v) = \left(\frac{3}{4\pi}\right)^{1/6} \left(\frac{6k_BT}{\rho}\right)^{1/2} \left(\frac{1}{u} + \frac{1}{v}\right)^{1/2} \left(u^{1/3} + v^{1/3}\right)^2$$

Here, u and v is the velocity in x and y direction, respectively.

- (i) Determine the condition (i.e. express "u" in terms of "v") for the maxima/minima of the collision frequency functions ($\beta_c(u, v)$ and $\beta_{FM}(u, v)$). Indicate whether this condition corresponds to a maximum or a minimum. (10%)
- (ii) Solve for "u" in terms of "v" by equating β_c and β_{FM} . (5%)
- 4. (i) Find derivative of $y = 2^{\sqrt{x}}$. (7%)
 - (ii) Find a power series representation of the function given below and find the interval of convergence of the series. (8%)

$$f(x) = \frac{2x}{1+x}$$

5. Solve
$$(2x + y) \frac{dy}{dx} = x + 2y$$
. (10%)

192 題號:

節次:

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(H)

6

題號:192

共2頁之第2頁

6.(i) Show that the general solution of y'' + Ay' + By = 0, can be written in the form of hyperbolic functions:

$$y(x) = [c_1 \cosh(\beta x) + c_2 \sinh(\beta x)] e^{\alpha x}$$

where α and β will be the function of A and B. For appropriate choice of α and β , assuming that $A^2 - 4B > 0$. (10%)

- (ii) Solve 9y'' + 3y' 2y = 0 in terms of hyperbolic functions. (5%)
- 7. Applying the Laplace transform, solve the following equation: (10%)

$$y'' - 3y' + 10 y = 1$$
; $y(0) = -1$, $y'(0) = 2$

試題隨卷繳回