題號: 180

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 流體力學(C)

題號:180

節次: {

共2頁之第1頁

Please write down all the critical steps in your answer. You can answer your questions in English or in Chinese (請寫出重要計算步驟。可以用英文或中文作答)

Problem 1 (20 points)

A proposed three-dimensional incompressible flow field has the following vector form:

$$\mathbf{V} = Kx\mathbf{i} + Ky\mathbf{j} + Kz\mathbf{k}$$

- (a) Determine if this field is valid solution to continuity and Navier-Stokes
- (b) If $\mathbf{g} = -\mathbf{g}\mathbf{k}$, find the pressure field p(x, y, z)

Problem 2 (20points)

The wall shear stress τ_w in a boundary layer is assumed to be a function of stream velocity U, boundary layer thickness δ , local turbulence velocity w, density ρ , and local pressure gradient dp/dx. Using (ρ, U, δ) as repeating variables, rewrite this relationship as a dimensionless function

Hint:
$$\tau_w \equiv ML^{-1}T^{-2}$$
, $dp/dx \equiv ML^{-2}T^{-2}$

Problem 3 (20points)

To determine the viscosity of a liquid of specific gravity 0.95, you fill, to a depth of 12 cm, a large container which drains through a 30-cm-long vertical tube attached to the bottom. The tube diameter is 2 mm, and the rate of draining is found to be 1.9 cm³/s. What is your estimate of the fluid viscosity? Is the tube flow laminar?

Problem 4 (20points)

A constant-thickness film of viscous liquid flows in laminar motion down a plate inclined at angle θ , as in figure. The velocity profile is: u = Cy(2h - y); v = 0; w = 0

- (a) Find the constant C in terms of the specific weight and viscosity and the angle θ .
- (b) Find the volume flux Q per unit width in terms of these parameters.

見背面

題號: 180 國立臺灣大學 113 學年度碩士班招生考試試題

科目: 流體力學(C)

節次:

題號:180

共2頁之第2頁

Problem 5 (20points)

A liquid of density ρ flows through the sudden contraction in figure and exits to the atmosphere. Assume uniform conditions (P_1, V_1, D_1) at section 1 and (P_2, V_2, D_2) at section 2. Find an expression for the force F exerted by the fluid on the contraction.

試題隨卷繳回