國立政治大學 113 學年度 碩士班暨碩士在職專班 招生考試試題

第 / 頁, 共6 頁

考試科目 計算機概論 系所別 資訊管理學系/科技組 考試時間 2月6日(二)第二節

I. Multiple choice questions (40 points, 4 pts each)

- 1. The CAP theorem explains some of the competing requirements in a distributed system with replication.
 Which statements are accurate regarding this theorem?
 - A) C means "Consistency", which guarantees that the nodes will have the same copies of a replicated data item in various transactions.
 - B) A means "Atomicity", which guarantees that each transaction is a single unit that either succeeds completely or fails completely.
 - C) P means "Partition tolerance", which guarantees that the system can continue operating even if the network fails and the nodes form disconnected partitions.
 - D) Distributed databases like MongoDB and Cassandra tend to prioritize "C" and "P" at the cost of sacrificing "A".
 - E) A MySQL database configured in the Master-Slave setting satisfies "C" and "A" but compromises "P".
 - (1) AB (2) AC (3) CD (4) DE (5) BD
- 2. Which statements about SQL and NoSQL databases are most accurate?
 - A) SQL is based on a structured query language with a fixed schema, while NoSQL is schema-less and can store unstructured data.
 - B) NoSQL is designed to handle distributed data stores, making them a common choice for cloud storage and big data applications.
 - C) Database normalization (i.e. 1NF, 2NF, 3NF, and 4NF) does not apply to NoSQL databases.
 - D) NoSQL databases often sacrifice some of the ACID (Atomicity, Consistency, Isolation, Durability) properties for better scalability and performance.
 - E) SQL is predominantly better at handling complex queries due to its rigid and well-defined schema.
 - (1) ABD (2) BCD (3) ABC (4) ABDE (5) ABCDE
- 3. Which statements are most accurate regarding network protocol behavior and standards?
 - A) OSPF is a routing protocol that calculates the shortest path for data packets to travel within an IP network using a path cost metric.
 - B) ARP operates at the Internet layer to translate network addresses such as IP addresses into physical MAC (Media Access Control) addresses.
 - C) ICMP is used for establishing and managing session states, often implemented at the Transport layer, alongside TCP and UDP.
 - D) HTTP/2 introduces multiplexing of requests over a single TCP connection to reduce the amount of required connections.
 - E) SSL/TLS protocols work at the Network layer to provide secure encryption capabilities for data packets

國立政治大學 113 學年度 碩士班暨碩士在職專班 招生考試試題 第 2 頁, 共 6 頁

考	試	科	E	計算	〕機概論		系 所 别	資	訊管理學系/	科技組	考試	. 時間	1 2	月	6	日(=	=);	第二章	ŕ
		transmitted across networks.																	
	(1)	AΒ	((2) BC	(3) AD	(4) CD	(5)	DE										
4.	Wh	What are the pros and cons of using threads compared to processes in parallel programming?																	
		A) Threads lead to more efficient system resource utilization than separate processes.																	
		B) Threads have lower context-switch overhead because they do not need to switch the memory space.																	
		C) Processes are more resilient to errors since one process crashing does not affect other processes. In																	
		contrast, thread errors can cause the entire process to crash.																	
		D) Threads need more complex synchronization mechanisms to manage shared resources and to avoid																	
		concurrency issues.																	
		E) Processes are generally easier to implement and debug, while threads can introduce complicated							ed										
		c	deb	ugging sc	enarios beca	us	se of sha	ared s	state and asy	nchrono	us exe	ecutio	n.						
									4-1										
	(1)	4BE		(2) BCD	(3) ACE		(4) AE	BD	(5) ABCDE										
5.	Whi	ich s	tate	ments ab	out the Unit	ie	d Mode	eling L	anguage (UI	ML) are n	nost a	ccura	te?						
		Which statements about the Unified Modeling Language (UML) are most accurate? A) Sequence diagram shows the interaction between objects in a system by modeling messages																	
	exchanged between them over time.																		
		B) Activity diagram shows the workflow of a system by modeling activities, actions, and control flows.																	
		C) Use case diagram shows the functionality of a system by modeling actors, use cases, and their																	
		r	ela	tionships.			11				71			0					
		D) Composition represents a "has-a" relationship, while Aggregation represents an "is-part-of"																	
		r	ela	tionship b	etween the	aį	ggregate	ed obj	ject and the	aggr ega t	e obje	ect.							
		E) /	A UI	ML use ca	se des <mark>cribes</mark>	tl	he over	all be	havior of the	system f	rom 1	the pe	rspe	ctive	e of t	he s	yster	n.	
	(4)			(2) 456	(2) 000		(4) D		(5) 40005										
	(1)	AED		(2) ABC	(3) BCD	٦	(4) BI	ΣE	(5) ABCDE										
6.	Whi	ich s	tate	ements ar	e most accu	rai	te regar	ding o	cybersecurity	/?									
	,	A) /	A ro	otkit is a :	set of specia	liz	ed tool	s for s	ystem admir	nistrators	to m	anage	and	mo	nitor	· syst	em s	ecurit	:у.
	B) A Zero-Day attack targets a vulnerability after the vulnerability is disclosed and before it is fixed.																		
	i	C) Post-quantum cryptography exploits quantum mechanics to secure communication and enhance																	
	cryptography.																		
		D) S	Soci	al engine	ering is a typ	e	of attac	k tha	t manipulate	s individ	uals ii	nto sh	aring	cor	nfide	ntial	info	rmatio	nc
		t	hat	they sho	uld not share	€.													
	;	E) 1	آwo	-factor au	ıthentication	()	2FA) is a	secu	rity process	aiming to	prev	ent th	ne Ma	an-ii	n-the	∍-Mic	ddle	attack	
	(1) A	ΔB	ſ	2) BC	(3) CD	(Δ) BD	(5) <i>A</i>	ΔD										
	\-,'			_,	,-,		,	(0)											

國立政治大學 113 學年度 碩士班暨碩士在職專班 招生考試試題 第 > 7頁, 共 6頁

考 試 科 目 計算機概論 系 所 別 資訊管理學系/科技組 考 試 時 間 2 月 6 日(2)第二節

- 7. Which of the following statements accurately describes the mechanisms of the GPT (Generative Pre-trained Transformer) architecture?
 - A) GPT uses an attention mechanism to focus on relevant parts of the input sequence and to facilitate context-aware text generation.
 - B) GPT uses a pre-training phase on a large text corpus to learn general language patterns before fine-tuning on task-specific datasets.
 - C) GPT uses recurrent neural layers that process input text sequentially, retaining state information across different positions in the text.
 - D) GPT uses reinforcement learning to improve its predictions based on user feedback.
 - E) GPT relies on stacked transformer blocks that utilize both self-attention and feed-forward neural networks within each block.
 - (1) ABE (2) BCD (3) ACE (4) BCE (5) ABCDE
- 8. Which of the following statements are correct about Redundant Array of Independent Disks (RAID)?
 - A) RAID 0 offers no data redundancy and distributes data across all disks to improve performance through stripping.
 - B) RAID 1 substantially increases read and write speeds while offering complete data redundancy by mirroring data across all disks.
 - C) RAID 5 requires at least three disks and provides data redundancy by distributing parity information across all disks in the array.
 - D) RAID 6 is like RAID 5 but requires only two disks and uses double striping instead of parity for fault tolerance.
 - E) RAID 10 (1+0) can tolerate the failure of at least one drive in each mirrored pair and typically requires more storage capacity than RAID 5 or 6.
 - (1) ABE (2) BCD (3) ACE (4) BCE (5) ABCDE
- 9. Which statements about software development are most accurate?
 - A) Waterfall development sets clear milestones in each stage and moves to the next stage only after the goal of the current stage is fulfilled.
 - B) Waterfall development appreciates a high degree of customer involvement so that the project outcome can be adjusted in a timely manner.
 - C) Waterfall development is more suitable than Agile when multiple software components must be designed in parallel for final integration.
 - D) Agile allows the team members to be involved with other work depending on the phases, while Waterfall demands highly devoted team members throughout the development.

國立政治大學 113 學年度 碩士班暨碩士在職專班 招生考試試題 第4頁,共6頁

考 試 科 目 計算機概論 系 所 別 資訊管理學系/科技組 考 試 時 間 2 月 6 日(ニ) 第二 節

- E) Agile relies on careful documentation and testing to ensure the quality and understanding of the software deliverables.
- (1) AD (2) BC (3) AE (4) AC
- 10. What statements about open-source licenses are most accurate?
 - A) If the software uses GPL-licensed code, it must disclose source code when it is distributed.

(5) CE

- B) The MIT license requires including the copyright and permission notice in all copies of the software.
- C) The Apache license allows the software to be patented but prohibits using the licensor's trademark.
- D) GPL allows both the right to patent the software and the right to use the licensor's trademark.
- E) MIT and Apache allow commercial use of the licensed software, but GPL does not.
- (1) ABDE (2) ABCE (3) ABCD (4) BCDE (5) ABCDE

II. Short-Answer Questions (60 points)

- 1. (5 points) What problems would imbalanced training data cause in machine learning? How do you mitigate these problems? Give at least one problem and one solution.
- 2. (10 points) Explain the major differences between virtual machines (VMs) and containers. Give a scenario where VMs are preferable to containers, and a scenario where vms are preferable to VMs.
- 3. (12 points) Give a short definition and at least one example for each of the following:
 - Data as a Service (DaaS)
 - Software as a Service (SaaS)
 - Platform as a Service (PaaS)
 - Infrastructure as a Service (laaS)
- 4. (15 points) Inspect the following multi-threaded Java program and answer the questions.

```
計算機概論
                            系所別
                                    資訊管理學系/科技組
試科
       目
                                                       考試時間 2月 6日(二)第二節
public class Main {
                                                  class Lock {
  public static void main(String[] args) {
                                                    Object lock = new Object();
    Lock lock = new Lock();
                                                    int now = 0, next = 0;
    for (int i = 1; i <= 10; i++) {
                                                    void acquire() {
      final int tid = i;
                                                     int id:
      Thread t = new Thread(new Runnable() {
                                                     synchronized(this) {
       public void run() {
                                                       id = next;
         lock.acquire();
                                                       next++;
         System.out.println("Thread " + tid);
         lock.release();
                                                     while(id != now) {}
       }
      });
                                                    void release() {
      t.start();
                                                     now++;
    }
  }
```

- 4.1 (5 pts) Argue that no two threads can print to the terminal at the same time.
- 4.2 (5 pts) Is the program still thread-safe after we change synchronized(this) to synchronized(lock)? Why?
- 4.3 (5 pts) Is it true that every thread eventually prints a message? Why?

(4 points) Consider a table Customers that contains fields
CustomerID and Country. Write a MySQL code to list the
number of customers in each country, ordered by the country
with the most customers first.

6.

Sample output:

Country	1	Count
Taiwan USA Japan Korea		1236 452 87 31

(4 points) Suppose that you have two tables, Customers and Orders.

Each entry of Customers contains two fields: CustomerID and

CustomerName. Each entry of Orders contains two fields: CustomerID and an OrderID. A customer can be related to several orders through CustomerID. Write a MySQL code to list the customer names and the number of orders associated with each customer.

Sample output:

Name	Count
Alice	120
Bob	75
Carl	256

(10 points) Pascal's triangle is defined as below. The row number starts from 1 (e.g., Row 1 is [1], Row 2 is [1 1], Row 3 is [1 2 1], etc.). Write a function that takes a row number k ≥ 1 and returns Row k of the triangle. Your program should run in O(k²) time and O(k) space.

國立政治大學 113 學年度 碩士班暨碩士在職專班 招生考試試題 第6頁,共6頁

考試時間 2月6日(二)第二節 試 科 目 計算機概論 系所別 資訊管理學系/科技組 Examples: Input: 1 Output: [1] 2 Input: 3 Output: [1 2 1] Input: 4 Output: [1 3 3 1] 一、作答於試題上者,不予計分。 註 二、試題請隨卷繳交。