南台科技大學 100 學年度研究所考試入學招生考試

系組：電機系甲組，電機系海外
准考證號碼：

（請考生自行填寫）

注意亨項	請先检查准考薦號碼，報考系（組）别，考武科目名稱，確定無誤後再作答。
	二，所有答案鷹寫於答案紙上，否則不予計分。
	三，作答時應依試題題號，依序由上而下書寫，作答及未作答之題號均㦄抄鴧。

1．Consider Fig． 1 below．
（7\％）（a）Find the transfer function between $R(s)$ and $C(s)$ ．
（7\％）（b）Let $G(s)=\frac{k}{s(s+2)(s+4)}, H(s)=\frac{1}{(s+6)}$ ．Are some of the poles of $\frac{C(s)}{R(s)}$ on the imaginary axis for some $k>0$ ？If so，what are the imaginary axis crossovers？

Fig． 1

2．Consider also Fig． 1 above
（7\％）（a）Find the range of non－negative k such that the system is stable．
（7\％）（b）Let $R(s)=\frac{1}{s}, k=1000$ ．Note that $C(s)$ represents the Laplace transform of $c(t)$ ．Can the output $c(t)$ reach a steady state？
（7\％）（c）Does the Nyquist plot of $\frac{1}{s(s+1)(s+4)(s+5)}$ encircle（ $-1,0$ ）？Please explain．（Note：You DO NOT need to draw the Nyquist plot）．

3．$\frac{d^{2} c(t)}{d t^{2}}+2 \frac{d c(t)}{d t}+3 c(t)=u_{1}(t)+u_{2}(t)$ represents a two－input，one－output linear time invariant system． Here $c(t)$ is the output，$u_{1}(t)$ and $u_{2}(t)$ are the inputs．Suppose all initial conditions are unknown．
（5\％）（a）Find the two transfer functions of this system．
（5\％）（b）If the inputs were sinusoidal with identical frequencies，is your answer for（a）above still the same？

4．(5%) Does $s^{3}+6 s^{2}+s+6=0 \quad$ have roots on the right－half plane？
5．（ 10% ）Consider the following difference equation

$$
m(k)=u(k)-u(k-1)
$$

where $u(k)=1$ for $k \geq 0$ ．Find $m(k)$ for $k>0$ when $m(0)=1$ ．
6．We have a system described by the state equations
$\left[\begin{array}{l}\dot{x}_{1}(t) \\ \dot{x}_{2}(t)\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]+\left[\begin{array}{c}-2 \\ 1\end{array}\right] u(t), \quad\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}x_{10} \\ x_{20}\end{array}\right]$
$y(t)=\left[\begin{array}{ll}0 & 1\end{array}\right] x(t)$
（1）Calculate $x_{1}(t), x_{2}(t)$ ，and $y(\mathrm{t})$ for $t>0$ ．（9\％）
（2）What is the transfer function of the system described by these state equations？（6\％）

7．Choose state variables as shown for the system shown in Fig． 2.
（1）Write the state equations．（5\％）
（2）Is the system realization controllable？Observable？（8\％）

Fig． 2 Control system

8．Fig． 3 shows a block diagram of a space vehicle control system．
（1）Determine the gain K such that the phase margin is 60° ．（6\％）
（2）What is the gain margin in this case？（6\％）

Fig． 3 Space vehicle control system

