國立成功大學

112學年度碩士班招生考試試題

編 號: 181、192、199

系 所:電機工程學系 電腦與通信工程研究所 電機資訊學院-微電、奈米聯招

科 目:電子學

期: 0206

節 次:第1節

備 註:可使用計算機

國立成功大學 112 學年度碩士班招生考試試題 編號: 181、192、199

所:電機工程學系、電腦與通信工程研究所、電機資訊學院-微電、奈米聯招 系

考試日期:0206,節次:1 考試科目:電子學

第1頁,共3頁

請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 ※ 考生請注意:本試題可使用計算機。

- 1. (選擇題,每小題 5 分) Please choose the most appropriate answer for the following questions:
 - (1) The Bode Plot for an open loop gain A(f) of an amplifier is shown in Fig. 1a. The amplifier is used with negative feedback and its DC closed-loop gain is 1,000. What is the gain margin of this amplifier with feedback?
 - (a) 0 dB, (b) 20 dB, (c) 40 dB, (d) 60 dB.
 - (2) Follow (1), what is the phase margin of this amplifier with feedback.
 - (a) -60° , (b) 45° , (c) 60° , (d) 135°.
 - (3) What is the value of the low-frequency power-supply rejection ratio with respect to V_{DD} ($PSRR^+ \equiv A_d / A^+$) for a well-matched two stage CMOS op amp shown in Fig. 1b, where g_m and r_o is the transconductance and output resistance of a MOSFET, respectively?
 - (d) ∞. (c) $\approx (g_m r_o)^2$, (a) 0, (b) $\approx g_m r_o$,
 - (4) Follow (3), what is the value of the low-frequency power-supply rejection ratio with respect to V_{SS} ($PSRR^- \equiv A_d / A^-$)?
 - (a) 0, (b) $\approx g_m r_o$, (c) $\approx (g_m r_o)^2$, (d) ∞.

Fig. 1a

Fig. 1b

- (5) Which of the following properties is wrong while applying negative feedback to an open-loop amplifier?
 - (a) Extends the 3db bandwidth
 - (b) Improves gain stability
 - (c) Increases gain-bandwidth product
 - (d) Reduces nonlinear distortion
- (6) For enhancing the high-frequency performance (such as slew-rate and unit-gain frequency) of a twostage CMOS op amp, we should?
 - (a) use smaller L for transistors, and operate transistors at larger overdrive voltage,
 - (b) use smaller L for transistors, and operate transistors at smaller overdrive voltage,
 - (c) use larger L for transistors, and operate transistors at larger overdrive voltage,
 - (d) use larger L for transistors, and operate transistors at smaller overdrive voltage,
- (7) What is the equivalent impedance of a LC resonator when the inductor (with inductance L) and capacitor (with capacitance C) are connected in series and resonate at a frequency of $\omega=1/\sqrt{LC}$? (d) ∞. (c) L/C, (a) 0, (b) C/L,
- (8) The response of a second-order low-pass filter will be maximally flat for a Q factor equal to
 - (c) $1/\sqrt{2}$, (d) 1/2. (a) $\sqrt{2}$, (b) 1,

編號: 181、192、199

國立成功大學 112 學年度碩士班招生考試試題

所:電機工程學系、電腦與通信工程研究所、電機資訊學院-微電、奈米聯招

考試科目:電子學

考試日期:0206,節次:1

第2頁,共3頁

(9) Fig. 1c shows the output response of a single-time-constant (STC) low-pass circuit to a 10-V step input. Please find the time taken, in terms of the time constant τ , for the output to reach 9.9 V.

Fig. 1c

- (a) 0.69τ , (b) 2.2τ ,
- (c) 3.3τ ,
- (d) 4.6τ .
- (10) What is the output resistance (R_{out}) of the Wilson current mirror shown in Fig. 1d, where g_{mi} and r_{oi} is the transconductance and output resistance of the MOSFET Qi, respectively?

- (b) $r_{o3} + (1/g_{m1})$,
- (c) $r_{03} + g_{m3}r_{03}(1/g_{m1})$,
- (d) $r_{o3} + g_{m3}r_{o3}(r_{o2})$

- 2. Fig. 2 considers the use of an op amp with unity-gain frequency of 20 MHz (f_t = 20 MHz), slew rate of 10 $V/\mu s$ (SR = 10 $V/\mu s$), and V_{omax} = 10V in the design of a noninverting amplifier with a nominal gain of 10. Assume $V_{in} = V_i \sin 2\pi ft$.
 - (a) If $V_i = 0.5$ V, what is the maximum frequency (f_{max}) before the output distorts? (4%)
 - (b) If f = 200 kHz, what is the maximum value of $V_i(V_{imax})$ before the output distorts? (4%)
 - (c) If $V_i = 0.5$ mV, what is the useful frequency range of operation (f_{3dB})? (4%)
 - (d) If f = 50kHz, what is the useful input voltage range (v_i) ? (4%)

- 3. The feedback amplifier of Fig. 3 consists of a common-gate amplifier formed by Q_1 and R_D , and a feedback circuit formed by the capacitive divider (C_1 and C_2) and the common-source transistor Q_f . Neglect r_0 and the loading effect of C_1 and C_2 on the basic amplifier. Assume $g_m = 5$ mA/V, $R_D = 10$ k Ω , $C_1 = 0.9$ pF and C_2 = 0.1 pF, and g_{mf} = 2 mA/V.
 - (a) Find the voltage gain $A_f = V_o/I_s$ (4%)
 - (b) Find the input resistance (R_{in}) and output resistance (R_{out}) (10%)

編號: 181,192,199

國立成功大學 112 學年度碩士班招生考試試題

系 所:電機工程學系、電腦與通信工程研究所、電機資訊學院-微電、奈米聯招

考試科目:電子學

考試日期:0206,節次:1

第3頁,共3頁

- 4. The MOSFET in the circuit of Fig. 4 has threshold voltage $V_{tn} = 0.8 \text{ V}$, $k_n = \mu_n C_{ox}(W/L) = 5 \text{ mA/V}^2$, $R_G = 10 \text{ M}\Omega$, and Early voltage $V_A = 40 \text{ V}$
 - (a) Find the values of R_S and R_D , so that $I_D=0.4$ mA, the largest possible value for R_D is used while a maximum signal swing at the drain of ± 0.8 V is possible. Neglect the Early effect. (4%)
 - (b) Find the value of transconductance (g_m) and output resistance (r_o) of Q_1 at the bias point. (4%)
 - (c) If the terminal Z is grounded, terminal X is connected to a signal source having a resistance of 1 M Ω , and terminal Y is connected to a load resistance of 10 k Ω , find the voltage gain from signal source to load. (4%)
 - (d) If terminal Y is grounded, find the voltage gain from X to Z with Z open-circuited. What is the output resistance of the source follower? (4%)
 - (e) If terminal X is grounded and terminal Z is connected to a current source delivering a signal current of 50 μ A, and having a resistance of 100 k Ω , find the voltage signal that can be measured at Y. For simplicity, neglect the effect of r_o . (4%)

