國立成功大學 112學年度碩士班招生考試試題

編 號: 177

系 所:電機工程學系

科 目:線性代數

日 期: 0206

節 次:第3節

備 註:不可使用計算機

編號: 177

國立成功大學 112 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:線性代數

考試日期:0206,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. (30 pts) Make each statement True or False and JUSTIFY each answer. 3 pts for each question. (Correct answer for 2 pts and suitable justification for 1 pts.)
 - (a). A is $n \times n$ matrix. The determinant of A is the product of the pivots in any echelon form U of A, multiplied by $(-1)^r$, where r is the number of row interchanges made during row reduction from A to U.
 - (b). If a set $\{v_1, ..., v_p\}$ spans a finite-dimensional vector space V and if T is a set of more than p vectors in V, then T is linearly dependent.
 - (c). B and C are bases for a vector space V. If $V = \Re^2$, $B = \{\mathbf{b}_1, \mathbf{b}_2\}$, and $C = \{\mathbf{c}_1, \mathbf{c}_2\}$, then row reduction of $[\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{b}_1 \ \mathbf{b}_2]$ to $[\mathbf{I} \ \mathbf{P}]$ produces a matrix **P** that satisfies $[\mathbf{x}]_B = \mathbf{P}[\mathbf{x}]_C$ for all **x** in V.
 - (d). A is $n \times n$ matrix. A row replacement operation on A does not change the eigenvalues.
 - (e). A, B, C are $n \times n$ matrices. If B is similar to A and C is similar to A, then B is similar to C.
 - (f). The Gram-Schmidt process produces from a linearly independent set $\{x_1, ..., x_p\}$ an orthogonal set $\{v_1, ..., v_p\}$ with the property that for each k, the vectors $v_1, ..., v_k$ span the same subspace as that spanned by $x_1, ..., x_k$.
 - (g). A is an $m \times n$ matrix and b is in \Re^m . A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a list of weights that, when applied to the columns of A, produces the orthogonal projection of \mathbf{b} onto Col A.
 - (h). If $B = PDP^T$, where $P^T = P^{-1}$ and D is a diagonal matrix, then B is a symmetric matrix.
 - (i). The maximum value of $Q(\mathbf{x}) = 7x_1^2 + 3x_2^2 2x_1x_2$, subject to the constraint $x_1^2 + x_2^2 = 1$, is $5 + \sqrt{5}$.
 - (j). A is an $m \times n$ matrix with a singular value decomposition $A = U\Sigma V^T$, where U is an $m \times m$ orthogonal matrix, Σ is an $m \times n$ "diagonal" matrix with r positive entries and no negative entries, and V is an $n \times n$ orthogonal matrix. If P is an orthogonal $m \times m$ matrix, then PA has the same singular values as A.
- 2. (20 pts) Let \mathbb{P}_3 have the inner product given by evaluation at -3, -1, 1, and 3. Let $p_0(t) = 1$, $p_1(t) = t$, and $p_2(t) = t^2$.
 - (a). (10 pts) Compute the orthogonal projection of p_2 onto the subspace spanned by p_0 and p_1 .
 - (b).(10 pts) Find a polynomial q that is orthogonal to p_0 and p_1 such that $\{p_0, p_1, q\}$ is an orthogonal basis for span $\{p_0, p_1, p_2\}$. Scale the polynomial q so that its vector of values at (-3, -1, 1, 3) is (1, -1, -1, 1).

編號: 177

國立成功大學 112 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:線性代數

考試日期:0206,節次:3

第2頁,共2頁

3. (15 pts) Find a factorization
$$\mathbf{A} = \mathbf{QR. A} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.

4. (35 pts, 7 pts each) Let A and its reduced echelon form be given as:

$$\mathbf{A} = \begin{bmatrix} -1 & -5 & 3 & 9 \\ -48 & -40 & 24 & 92 \\ 94 & 70 & -42 & -166 \\ -48 & -40 & 24 & 92 \end{bmatrix}, \mathbf{U} = \begin{bmatrix} 2 & 0 & 0 & -1 \\ 0 & 10 & -3 & -17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We already know that $\lambda = 4$ is an eigenvalue of A, and $\mathbf{u} = [1, 0, 2, 0]^T$ is an eigenvector of A.

- (a) Find a basis for the eigenspace for $\lambda = 4$.
- (b) What is the eigenvalue for the eigenvector u?
- (c) Notice that the second and fourth rows of A are the same. Does that imply we have a certain eigenvalue? Find a basis for its eigenspace. To save you some time, we have included the reduced echelon form of A.
- (d) What is the characteristic polynomial of A?
- (e) Show that A is diagonalizable by finding an appropriate P and D.