國立成功大學 112學年度碩士班招生考試試題

編 號: 176

系 所:電機工程學系

科 目:離散數學

日期:0206

節 次:第3節

備 註:不可使用計算機

編號: 176

國立成功大學 112 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:離散數學

考試日期:0206,節次:3

第1頁,共1頁

*	考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分
1.	(10%) Prove Let a, b \in Z. If a \ge 2, then either a \nmid b or a \nmid (b + 1) (use contradiction to prove)
2.	(10%) Use iteration to guess an explicit formula for the sequence. Simplify your answer whenever possible. $h_k=2^k-h_{k-1}$, for all integers $k\ge 1$, $h_0=1$
3.	(10%) For how many integers from 1 through 99,999 is the sum of their digits equal to 10?
4.	(10%) What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots 1, 1, 1, 1, -2, -2, -2, 3, 3, -4?
5.	(10%) Determine an integer n such that $n \equiv 1 \pmod{7}$, $n \equiv 3 \pmod{8}$ and $n \equiv 2 \pmod{9}$
6.	(10%) Which amounts of postage can be formed using only 5-cent and 6-cent stamps? Formulate a conjecture and prove it.
7.	(40%) Express the negations of each of these statements so that all negation symbols immediately precede predicates (a) (10%) \forall x \exists y \forall z T(x, y, z) (b) (10%) \forall x \exists y P(x, y) \lor \forall x \exists y Q(x, y) (c) (10%) \forall x \exists y (P(x, y) \land \exists z R(x, y, z)) (d) (10%) \forall x \exists y (P(x, y) \rightarrow Q(x, y))