國立成功大學 112學年度碩士班招生考試試題

編 號: 260

系 所: 生物化學暨分子生物學研究所

科 目: 有機化學

日期:0207

節 次:第2節

備 註:不可使用計算機

國立成功大學 112 學年度碩士班招生考試試題

系 所:生物化學暨分子生物學研究所

考試科目:有機化學

考試日期:0207,節次:2

第1頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. In each pair, select the stronger acid: (6 points)
 - (a) Citric acid (pKa₁ 3.08) or phosphoric acid (pKa₁ 2.10)
 - (b) Nicotinic acid (niacin, Ka 1.4×10^{-5}) or acetylsalicylic acid (aspirin, Ka 3.3×10^{-4})
 - (c) Phenol (Ka 1.12×10^{-10}) or acetic acid (Ka 1.74×10^{-5})
- 2. Please draw the most stable conformation of each of the following Newman projections of that molecule: (8 points)

(a)
$$H$$
 CH_3
 CH_3
 H
 CH_3
 CH_3
 H
 CH_3
 CH_3

3. Complete these equations by predicting the major product formed in each reaction: (6 points)

(b)
$$+ H_2O \xrightarrow{H_2SO_4}$$

4. Propose a mechanism for each of the following transformations. (6 points)

(a)
$$+$$
 HBr \longrightarrow Br

(b)
$$+ H_2O \xrightarrow{H_2SO_4} HO$$

國立成功大學 112 學年度碩士班招生考試試題

系 所:生物化學暨分子生物學研究所

考試科目:有機化學

考試日期:0207,節次:2

第2頁,共4頁

5. Lactose exists in α and β forms, with specific rotations of 192.6° and 134°, respectively. Solutions of each isomer mutarotate to an equilibrium value of 152°. What is the percentage of each isomer at equilibrium? (5 points)

6. Show how to convert methylenecyclohexane into each of these compounds. (6 points)

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

7. Complete these SN₂ reactions: (6 points)

(a)
$$Na^{+}\Gamma^{-} + CH_{3}CH_{2}CH_{2}CI \xrightarrow{acetone}$$

(b)
$$NH_3 +$$
 ethanol

(c)
$$CH_3CH_2O^-Na^+ + CH_2 = CHCH_2Cl \xrightarrow{ethanol}$$

8. Complete these reactions by determining the type of reaction and mechanism (SN₁, SN₂, E₁, or E₂) that they undergo. (9 points)

(b)
$$CH_3$$
 $Ra^{+}I^{-}$ acetone $Ra^{+}I^{-}$

(c)
$$I$$
 + Na^+OH $\xrightarrow{80 \text{ °C}}$

國立成功大學 112 學年度碩士班招生考試試題

系 所:生物化學暨分子生物學研究所

考試科目:有機化學

考試日期:0207,節次:2

第3頁,共4頁

9. 4-Aminobenzoic acid is a building block in the synthesis of the topical anesthetic benzocaine. Show how this building block can be synthesized in three steps from toluene: (6 points)

$$\begin{array}{c} \text{CH}_3 \\ \text{O}_2 \text{N} \end{array} \begin{array}{c} \text{COOH} \\ \text{O}_2 \text{N} \end{array} \begin{array}{c} \text{COOH} \\ \text{O}_2 \text{N} \end{array} \begin{array}{c} \text{COOH} \\ \text{H}_2 \text{N} \end{array}$$

- 10. 5-Hydroxyhexanal forms a six-membered cyclic hemiacetal that predominates at equilibrium in aqueous solution: (6 points)
 - (a) Draw a structural formula for this cyclic hemiacetal.
 - (b) How many stereoisomers are possible for 5-hydroxyhexanal?
 - (c) How many stereoisomers are possible for the cyclic hemiacetal?
- 11. Please draw the mechanism of the following reaction. (4 points)

CH₃CH + H₂N
$$\longrightarrow$$
 CH₃CH=N \longrightarrow + H₂O

Ethanal Aniline An imine (A Schiff base)

12. Complete these examples of Fischer esterification (assume an excess of the alcohol): (6 points)

(b)
$$+ CH_3OH \stackrel{H^+}{\longleftarrow}$$
 (c) $+ CH_3OH \stackrel{H^+}{\longleftarrow}$ OH $+ CH_3OH \stackrel{H^+}{\longleftarrow}$

國立成功大學 112 學年度碩士班招生考試試題

所:生物化學暨分子生物學研究所

考試科目:有機化學

考試日期:0207,節次:2

第4頁,共4頁

13. Nicotinic acid, more commonly named niacin, is one of the B vitamins. Show how nicotinic acid can be converted to ethyl nicotinate and then to nicotinamide: (6 points)

14. Complete these reactions. (6 points)

(a)
$$0 \xrightarrow{1)2} MgBr$$

$$2) H_2O/HCI$$

15. Which disaccharides are reduced by NaBH₄? (4 points)

- (a) Sucrose
- (b) Lactose
- (c) Maltose
- 16. Draw zwitterion forms of these amino acids. (6 points)
 - (a) Valine
 - (b) Phenylalanine
 - (c) Glutamine
- 17. Do the following compounds migrate to the cathode or the anode on electrophoresis at the specified pH? (4 points)
 - (a) Histidine at pH 6.8
 - (b) Lysine at pH 6.8
 - (c) Glutamic acid at pH 4.0
 - (d) Glutamine at pH 4.0