國立中正大學 112 學年度碩士班招生考試

試 題

[第1節]

科目名稱	電磁學
系所組別	電機工程學系-電磁晶片組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之系所組別、科目名稱是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:電磁學

本科目共2頁第1頁

系所組別:電機工程學系-電磁晶片組

1. (5%) Find ∇V for the scalar function $V = 2r^2 \cos^2 \phi$.

Fig. 1

Fig. 2

- 2. (15%) An dc voltage V_0 is applied across a parallel-plate capacitor of area S as shown in Fig. 1. The space between the metal plates is filled with two different lossy dielectrics of thickness d_1 and d_2 , dielectric constants ε_{r1} and ε_{r2} , and conductivities σ_1 and σ_2 , respectively. Given $V_0 = 5$ V, $d_1 = 1$ mm, $d_2 = 0.5$ mm, $\sigma_1 = 2$ S/m, $\sigma_1 = 5$ S/m, $\varepsilon_{r1} = 4.4$ and $\varepsilon_{r2} = 2.2$, respectively, determine
 - (a) (3%) The current density J between the plates.
 - (b) (4%) The electric field intensities E in both dielectrics.
 - (c) (4%) The surface charge densities on the metal plates
 - (d) (4%) The surface charge density at the interface.

Fig. 3

- 3. (10%) Given a 4.0 cm radius solid wire centered on the z-axis with a volume current density $J = a_z 8r$ A/cm³ (for r in cm), calculate and plot the magnetic field intensity H versus radial distance from the z-axis over the range $0 \le r \le 10$ cm.
- 4. (10%) A rectangular loop is moving with velocity v radially away from a wire that carries a dc current I_0 as shown in Fig. 2. Determine:
 - (a) (5%) The magnetic flux through the loop as a function of time.
 - (b) (5%) An expression for the current induced in the loop as a function of time.
- 5. (10%) An electric dipole as shown in Fig. 3 consists of positive charge +q = 10e and negative charge -q = -10e with a small separation of 5×10^{-12} m, where $e = 1.6 \times 10^{-19}$ C is the elementary charge. Find:
 - (a) (3%) The dipole moment of the electric dipole.

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:電磁學

本科目共2頁第2頁

系所組別:電機工程學系-電磁晶片組

- (b) (3%) The electric potential V at P as $R \gg d$ in terms of spherical coordinates.
- (c) (4%) The electric field intensity E at P as $R \gg d$ in terms of spherical coordinates.
- 6. (24%) An EM-wave (frequency= 1×10⁹ Hz) traveling in a dielectric medium (medium-1) impinges normally upon a perfect conductor (medium-2). Figure below shows the magnitude plot of E-field standing waves generated in medium-1

- (a) (3%) Find the standing wave ratio (SWR)
- (b) (3%) Determine the wavelength λ of this wave.
- (c) (3%) Find the propagation velocity ν_p .
- (d) (3%) Determine the propagation constant β of this wave.
- (e) (3%) What is the dielectric constant of medium-1?
- (f) (3%) What is the characteristic impedance of medium-1?
- (g) (6%) Find the mathematical expressions for the incident E-field and H-field.
- 7. (26%) A 100-Ohm dielectric-filled (ε_r =2) transmission line is excited by connecting it to the voltage source at t = 0 shown as below. The voltage V(z=0, t) observed at the input of the line is given by :

- (a) (3%) What is the length L of this line?
- (b) (3%) What is the value of the load R_L ?
- (c) (3%) What is the value of the load Rs?
- (d) (3%) What is the value of generator voltage V_0 ?
- (e) (3%) What is the capacitance C per meter of this transmission line?
- (f) (5%) Plot the bounce (Reflection) diagram (Time vs. z).
- (g) (6%) Plot voltage vs. time observed at z = 0.4L.