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There are total 100 points. Justify your answer appropriately to get a full mark for the question.
Write down the question number for each question, and leave it blank if you are not able to answer

the question.

1. (10 points) Define

v ) 2023 if xe@y
f(“”)_{o if ©¢Q,

where @ is the set of all rational numbers. Show that f is nowhere continuous on R.

2. (10 points) Suppose that (f,)22; is a sequence of real-valued functions that converge uni-

formly to f on R™. Show that if f, are continuous, then f is a continuous function on R™.
3. (10 points) Consider the vector-valued function F' : R? — R? defined by
F(z,y) = (" cosy, €”siny).
Show that F is not invertible but locally invertible everywhere on R?.

4, (15 points) Let 7
:1:3 «
Flo,y) = 4 P if (z,y) # (0,0);
’ 0 otherwise.

Show that F' is not differentiable at (0, 0), but all directional derivatives of F’ exist.

5. (15 points) Show that

defines a continuous function on R3.
6. (20 points) State and prove the Weierstrass M-test.
7. (20 points) Let

in(1) i 1
= {10 iz e

Show that the graph of f is connected but not path connected on R?,






