國立高雄第一科技大學 100 學年度 碩士班 招生考試 試題紙

系 所 別:運籌管理系

組 別:工業管理組

考科代碼: 2314

考 科:生產管理

注意事項:

1、本科目得使用本校提供之電子計算器。

2、請於答案卷上規定之範圍作答,違者該題不予計分。

1. A simplified material requirements planning schedule is as shown below:

Item A	1 st	2 nd	3 rd	4 th	5 th
Lead Time (<i>LT</i>)= 2 weeks	week	week	week	week	week
On Hand (<i>OH</i>)= 50					
Safety Stock (SS) = 5					
Order qty (Q)= lot-for-lot					
Gross Requirements $[G(t)]$,		
Scheduled Receipts [S(t)]					
Projected Available					
Balance [P (t)]		·	·		
Net Requirements [N(t)]					,
Planned Order Receipts	,		. Collecture.		
[O(t)]					
Planned Order Releases					
[R(t)]					

- (a) Show the calculating equation of Projected available balance, P(t). (5%)
- (b) Show the calculating equation of Planned Order Releases, R(t). (5%)

第1頁,合計3頁【尚有試題】

2. The following matrix contains the costs (in dollars) associated with assigning Jobs A, B, C, D and E to Machines 1, 2, 3, 4, and 5. Assign jobs to machines to minimize costs. (10%)

Jobs		Machines *					
	1	2	3	1 4	5		
A	5	6	4	8	3		
В	. 6	4	9	8	5		
C	4	3	2	5	4		
D	7	2	4	5	3		
E	3	6	4	5	5		

3. The following table contains information regarding jobs that are to be scheduled through one machine:

Job	Processing Time (Days)	Due Date
A	4	20
В	12	30
С	2	15
D	11	16
E	10	18
F	3	5
G	6	9

- (a) What is the first-come, first-served (FCFS) schedule? (7%)
- (b) What is the shortest operating time (SOT) schedule? (7%)
- (c) What is the slack time remaining (STR) schedule? (8%)
- (d) What is the earliest due date (EDD) schedule? (8%)

4. BuzzToys produces a light flying robot on a conveyor with nine stations. Each station has one worker assigned to it. Processing times (in seconds) are summarized in the following table.

				_					
station	1	2	3	4	5	6	7	8	9
processing times	75	85	90	65	70	55	80	65	80

- (a) How many flying robots can be assembled every hour? (6%)
- (b) If each worker receives \$15 per hour, what is the direct labor cost per robot? (6%)
- (c) What would be the direct labor cost per robot if work would be organized in a work cell, that is, one worker performs all tasks? Assume processing times remain unchanged. (8%)
- 5. An outdoor clothing store chain wants to order a line of parkas at \$12 each from its Asian supplier. The store chain intends to sell these parkas at \$25 each and forecasts the demand is normally distributed with mean of 2,100 and standard deviation of 1,200. Unsold parkas will go on sale at \$10 each after the selling season.
 - (a) What is the optimal fill rate that maximizes the expected profit? (7%)
 - (b) Use the following normal distribution table to compute the optimal order quantity that maximizes the expected profit. (8%)

z	$\Phi(z)$	z	$\Phi(z)$	z	Φ(z)	Z	Φ(z)
	0.80						
0.88	0.81	1.08	0.86	1.34	0.91	1.75	0.96
							0.97
	0.83						
	0.84						

- 6. Last December you decided to apply double exponential smoothing to forecast the monthly sales. Based on December sales and previous experience, you chose α =0.25, δ =0.20, an initial trend forecast T_1 =1, and an initial exponentially smoothed forecast F_1 =30.
 - (a) It has been three months since you started this forecasting process. The following table contains actual sales data from December to March. Compute the forecast including trend (FIT₅) for April. (8%)

Month	December	January	February	March
Sales	A ₁ =31	A ₂ =34	A ₃ =32	A ₄ =35

(b) Calculate the MAD of forecast errors from January to March. (7%)