國立成功大學

112學年度碩士班招生考試試題

編 號: 110

系 所:工程科學系

科 目: 通信系統

日期:0207

節 次:第1節

備 註:不可使用計算機

编號: 110 國立成功大學

國立成功大學112學年度碩士班招生考試試題

系 所:工程科學系 考試科目:通信系統

第 1 頁,共2頁

考試日期:0207,節次:1

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
 - 1) (20 marks, 4 marks each) Answer the following questions:
 - a) Additive white Gaussian noise (AWGN) is a performance impairing factor in a communication system. Please specify what does it mean in each letter: "A", "W", and "G"? (You must give your explanations for each letter, rather than just spell out the word for each letter.)
 - b) Mobility in a cellular system makes the channel a time-variant channel. Explain what is a time-variant channel.
 - c) Multi-path propagation in a wireless communication system normally is a cause of frequency-selectivity of the channel. Explain what is a frequency-selective channel.
 - d) What is the name of the satellite communication system developed by Ellon Mask?
 - e) Which are the major technical features in 5G wireless communications (you can list them as many as possible)?
 - 2) (30 marks, 5 marks each) One way to implement conventional AM modulation is to use a square-law device whose input-output voltage curve can be written as $v_{out} = a_1 v_{in} + a_2 v_{in}^2$. Assume that the input signal is $v_{in} = m(t) + \cos(2\pi f_c t)$, where m(t) is the normalized message signal, f_c is the carrier frequency, and the bandwidth of m(t) is W.
 - a) Write down the expressions step-by-step to generate the conventional AM modulated signal at a transmitter.
 - b) Draw a block diagram for a conventional AM signal transmitter.
 - c) Draw a block diagram for a conventional AM signal receiver.
 - d) If a bandpass filter should be used in the transmitter, what is the bandwidth of the bandpass filter?
 - e) If a bandpass filter and a lowpass filter should be used in the receiver, what are the bandwidths of the two filters? (You must give your reasons for the bandwidths selected for the two filters.)
 - f) Please write down an expression for the values of a_1 and a_2 in order to avoid overmodulation.
 - 3) (20 marks, 4 marks each) Assume that m(t) is a message signal, $\widehat{m}(t)$ is the Hilbert transform of m(t), and $c(t) = A_c \cos(2\pi f_c t)$ is the carrier signal. Please write down the signal expressions for the AM modulations as follows:
 - a) Double-sided band suppressed carrier (DSB-SC) modulation.
 - b) Conventional AM modulation.
 - c) Single-sided band (SSB) modulation.
 - d) If we want to use an envelope detector (ED) to detect the above AM signals, which

编號:

系

110

國立成功大學112學年度碩士班招生考試試題

所:工程科學系

考試科目: 通信系統

考試日期:0207,節次:1

第 2 頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

AM modulated signals can be detected by ED, and which can not? (You must explain why)

- e) Assume that a local reference carrier $\cos(2\pi f_c t + \theta)$ is used to detect the received AM signal, and θ is not equal to zero. Is it possible to detect the aforementioned three AM modulated signals at a receiver successfully? (You must explain why)
- 4) (30 marks, 5 marks each) Assume that m(t) is a message signal with its bandwidth W, $A_c \cos(2\pi f_c t)$ is the carrier signal, β_f and β_p are modulation indexes for frequency and phase modulators, and k_f and k_p are frequency and phase deviation constants.
 - a) Write down the expressions to explain how to generate a frequency modulated (FM) signal with a phase modulator.
 - b) Draw a block diagram to show the receiver structure to generate the FM signal with a phase modulator.
 - c) Write down the expressions to explain how to generate a phase modulated (PM) signal with a frequency modulator.
 - d) Draw a block diagram to show the receiver structure to generate the PM signal with a frequency modulator.
 - e) Normally two filters are needed in a FM signal receiver. One is a bandpass filter and the other is a lowpass filter. Please give the bandwidths for the two filters, and explain why.
 - f) FM and PM signals are also called angle modulated signals. Explain why FM is used much more widely than PM. (Hint: you need to answer this question based on the differences in the output signal to noise ratios at FM and PM receivers.)