國立成功大學 112學年度碩士班招生考試試題

編 號: 130

系 所:系統及船舶機電工程學系

科 目:電子學

日期:0206

節 次:第2節

備 註:可使用計算機

編號: 130

國立成功大學 112 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目: 包3/图

考試日期:0206,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Use two ideal op amps and resistors to implement the summing function $v_0 = v_1 + 2v_2 - 3v_3 - 5v_4$ (20%)

- 2. As Figure 1, derive the transfer function and show that the high-frequency gain is $(-R_2/R_1)$ and the 3-dB frequency $\omega_0=1/CR_1$. Design the circuit to obtain a high-frequency input resistance of $1k\Omega$, a high-frequency gain of 40 dB, and a 3-dB frequency of 2 kHz. At what frequency does the magnitude of the transfer function reduce to unity? (20%)
- 3. In the circuit of Figure 2, the BJT is biased with a constant-current source, and v_{sig} is a small sine-wave signal. Find R_{in} and the gain v_o/v_{sig} . Assume $\beta=100$. If the amplitude of the signal v_{be} is to be limited to 5 mV, what is the largest signal at the input? What is the corresponding signal at the output? (20%)

Figure 1

Figure 2

編號: /30

國立成功大學 112 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:包子图

第2頁,共2頁

考試日期:0206,節次:2

4. Transistor Q_1 in Figure 3 is operating as a CE amplifier with an active load provided by transistor Q_2 , which is the output transistor in a current mirror formed by Q_2 and Q_3 . (Note that the biasing arrangement for Q_1 is *not* shown.)

(a) Neglecting the finite base currents of Q_2 and Q_3 , and assuming that their $V_{BE} \cong 0.7 \text{V}$ and that Q_2 has five times the area of Q_3 , find the value of I. (5%)

(b) If Q_1 and Q_2 are specified to have $|V_A| = 20 \text{ V}$, find r_{o1} and r_{o2} and hence the total resistance at the collector of Q_1 . (5%)

(c) Find $r_{\pi 1}$ and g_{m1} assuming that $\beta_1 = 50$. (5%)

(d) Find R_{in} , A_{ν} , and R_o . (5%)

5. The amplifier in Figure 4 is biased to operate at g_m = 5mA/V, and has the following component values: R_{sig} = 100 k Ω , R_{GI} = 47M Ω , R_{G2} = 10M Ω , C_{CI} = 0.01 μ F, R_S = 2 k Ω , C_S = 10 μ F, R_D = 4.7k Ω , R_L = 10k Ω , and C_{C2} = 1 μ F. Find A_M , f_{P1} , f_{P2} , f_Z , f_{P3} , and f_L . (20%)

Figure 3

Figure 4