國立成功大學 112學年度碩士班招生考試試題

編 號: 126

系 所:系統及船舶機電工程學系

科 目:動力學

日期:0206

節 次:第2節

備 註:可使用計算機

編號: 126

國立成功大學 112 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:動力學

考試日期:0206,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 請注意,所有問題請以數字作答。重力加速度 $g=9.81 \text{ m/s}^2$,圓周率 $\pi=3.14 \text{ rad}$ 。

(1) At the instant shown in Fig. 1, cars A and B are traveling at the speeds shown. If B is accelerating at 1600 km/h² while A maintains a constant speed, determine the velocity $v_{A/B}$ [5%] and acceleration $a_{A/B}$ [5%] of A with respect to B. Both $v_{A/B}$ and $a_{A/B}$ are the magnitude of the resultant.

- (2) See Fig. 2, the man at A wishes to throw two darts at the target at B so that they arrive at the <u>same time</u>. If each dart is thrown with a speed of 10 m/s, determine the angles θ_C [5%] and θ_D [5%] at which they should be thrown and the time Δt [5%] between each throw. Note that the first dart must be thrown at θ_C (> θ_D) then the second dart is thrown at θ_D . The distance between A and B is L = 4.35.
- (3) At the instant shown in Fig. 3, the wheel rotates with an angular velocity of $\omega = 14.5$ rad/s and an angular acceleration of $\alpha = 7.5$ rad/s². Determine the magnitudes of the resultants as follows: the velocity v_B of pin B [5%], angular velocity ω_{BC} of rod BC [5%], acceleration a_B of pin B [5%], acceleration a_C of pin C [5%], and angular acceleration α_{BC} of link BC [5%].

Fig. 3

編號: 126

國立成功大學 112 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:動力學

考試日期:0206,節次:2

第2頁,共2頁

(4) As shown in Fig. 4, the 2-Mg car is traveling along the curved road described by $r = (52.5e^{2\theta})$ m, where θ is in radians. If a camera is located at A and it rotates with an angular velocity of $\dot{\theta} = 0.05$ rad/s and an angular acceleration of $\ddot{\theta} = 0.01$ rad/s² at the instant $\theta = \pi/6$ rad, determine the acceleration in r- θ coordinate: a_r [5%] and a_θ [5%], and the resultant friction force F [10%] developed between the tires and the road at this instant. Note: Mg = 1000 kg.

(5) The motor exerts a force of $F = (23 t^2) N$ on the cable (see Fig. 5), where t is in seconds. Determine the speed ν [15%] of the 23-kg crate A when t = 4 s. The coefficients of static and kinetic friction between the crate and the plane are $\mu_s = 0.3$ and $\mu_k = 0.25$, respectively.

Fig. 4

Fig. 5

(6) At the instant shown in Fig. 6, the uniform 35 kg slender rod has a counterclockwise angular velocity of $\omega = 7$ rad/s. Determine the tangential component O_t [5%] and normal component O_n [5%] of reaction of pin O on the rod and the angular acceleration α [5%] of the rod at this instant.