# 國立成功大學 112學年度碩士班招生考試試題

編 號: 73

系 所:機械工程學系

科 目: 工程數學

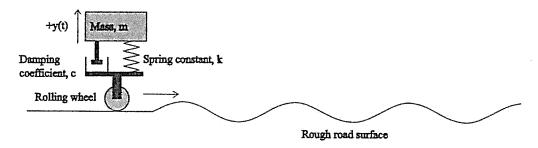
日期:0206

節 次:第3節

備 註:不可使用計算機

#### 編號: 73

## 國立成功大學 112 學年度碩士班招生考試試題


系 所:機械工程學系 考試科目:工程數學

考試日期:0206,節次:3

### 第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1) The suspension system of a motorcycle can be modeled by a spring-damp system, in which m = 120 kg, c = 1920 N-s/m, k = 1200 N/m. The vehicle rolling over the road surface can be described by  $r(x) = 1200 \sin(10t)$ . The system can be modeled by my''(t) + cy'(t) + ky(t) = r(x); y(0) = 0; y'(1) = 5m/s (20 pts)



$$my''(t) + cy'(t) + ky(t) = r(x); y(0) = 0; y'(1) = 5m/s$$

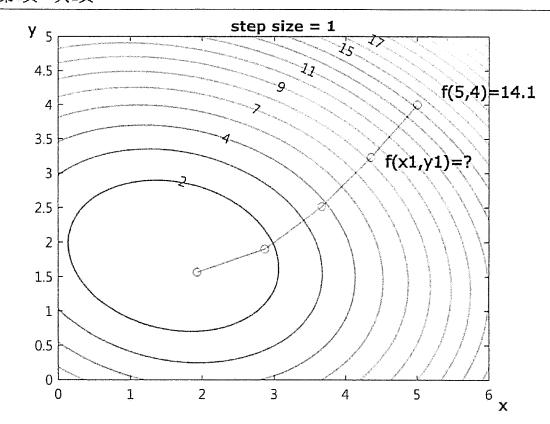
- (a) Solve the differential equation with c = 0 N-s/m (8pts)
- (b) Solve the differential equation with c = 1920 N-s/m. (8pts)
- (c) Which of the above c may result in immediate and unexpected structural failure (No points will be given if the explanation is incorrect) (4pts)

$$\begin{cases} y_1' &= -y_1 + y_2 \\ y_2' &= y_1 - 2y_2 + y_3 \text{ with } y_1(0) = 0; y_2(0) = 1; y_3(0) = 0, \text{ what are the limits of } \\ y_3' &= y_2 - y_3 \end{cases}$$

$$y_1(t), y_2(t) \text{ and } y_3(t) \text{ as } t \to \infty \text{ (15 pts)}$$

3) The contour map of a function  $f(x,y) = (\frac{3}{4}x - \frac{3}{2})^2 + (y-2)^2 + \frac{1}{4}xy$  is represented by the following figure. Given that the initial position is x=5, y=4, find the unit vector of steepest descent direction, i.e. the direction of maximum decrease. After moving one step of the unit vector, what is location of the next position  $(x_1, y_1)$ ? What is the value of  $f(x_1, y_1)$ ? (15pts)

編號: 73


## 國立成功大學 112 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:工程數學

考試日期:0206,節次:3

第2頁,共2頁



4. Please use the Laplace transform to solve the following integral equation. (10pts)

$$f(t) = 1 + t - \frac{8}{3} \int_0^t (\tau - t)^3 f(\tau) \, d\tau$$

5. (a) Find the Fourier transform of following equation (8pts)

$$f(t) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$$

(b) To use the result to evaluate (7pts)

$$\int_{-\infty}^{\infty} \frac{\sin w \cos wx}{w} dw$$

6. To evaluate (a) 
$$\oint_c \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz$$
; (b)  $\oint_c \frac{e^{2z}}{(z-1)^4} dz$ , where C is  $|z-1| = 2$  (10pts)

7. Please find 
$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial \phi}{\partial t}$$
,  $0 < x < \infty$ ,  $t > 0$ , and (15pts)

- (1) Boundary conditions are  $\emptyset(0,t) = 0$ ,  $\emptyset(\infty,t) =$ bounded
- (2) Initial condition  $\emptyset(x, 0) = f(x)$