國立成功大學 112學年度碩士班招生考試試題

編 號: 41

系 所: 光電科學與工程學系

科 目:電子學

日期:0207

節 次:第1節

備 註:不可使用計算機

國立成功大學 112 學年度碩士班招生考試試題

編號: 41

系

所:光電科學與工程學系

考試科目:電子學

考試日期:0207,節次:1

第1頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. The zener diode in the circuit of Fig.1 is specified to have V_z =6.8V at I_z =5 mA, r_z =20 Ω and I_{zk} =0.2 mA. The power supply voltage V*=10V. Please find the right items.
 - (A) $V_o = 6.83$ V with no load (B) $I_L=13.6$ mA when $R_L=0.5$ K Ω (C) $V_o = 5$ V when $R_L=0.5$ K Ω (D) $I_Z=6.35$ mA with no load (6%)

- 2. The threshold voltage will increase for an n-channel MOS FET when (A)increase the reverse bias of substrate (B) decrease the doping concentration of substrate (C)increase the thickness of gate oxide (D) increase the gate length. (3%)
- 3. Which of the following statement(s) is(are) true(A)The BJT transconductance increases exponentially with respect to V_{BE}.(B)The MOS FET's transconductance increases linearly with respect to V_{GS}.(C)A PMOS FET has four terminals(D)Compared with MOS FET, BJT device has higher input impedance. (3%)
- 4. As shown in Fig. 2, if the five forward I-V curves correspond to a GaAs junction diode operated at different temperatures, please identify which of the following item(s) is(are) true.(A) $T_1>T_2(B)T_3>T_4(C)T_2>T_5(D)T_3>T_2(E)T_5>T_4(3\%)$

Fig. 2

國立成功大學 112 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0207,節次:1

第2頁,共4頁

編號: 41

5. As shown in Fig.3, the currents I_{D1} , I_{D2} , I_{D3} , I_{D4} , in each of the diodes D_1 , D_2 , D_3 , D_4 . When diodes are assumed to be ideal, which of the following item(s) is(are) true (A) I_{D1} = 5mA, I_{D2} =2mA (B) I_{D3} =1 mA, I_{D4} =1 mA (C) V_0 =1 V, I_{D2} =3 mA (D) I_{D3} =1 mA, V_0 =0 V (10%)

Fig.3

6. If the β is equal to 100 for transistors in Fig.4, which of the following item(s) is(are) true (A) V_A =4.73 V, V_E =1.90 V (B) V_C =11.31 V, V_B =4.03 V (C) V_E =2.90 V, V_D =12.07 V (D) V_B =3.03 V, V_D =12.07 V (10%)

7. As shown in Fig.5, $g_m=1$ mA/V and $r_0=100$ k Ω . Note that while the lower end of r_0 is not actually grounded, the signal there is small. Assume it to be zero. (A)Find $V_0/V_i=?$ (B)If $R_s=0$, $V_0/V_i=?$ (C) If $R_s=3.76$ k Ω , $V_0/V_i=?$ (15%)

國立成功大學 112 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0207,節次:1

第3頁,共4頁

編號: 41

8. All BJT transistors in circuit shown in Fig. 6 are identical and have current gain (β) >> 1. Please find i₀ in terms of i_A and i_B. (10%)

- 9. A two-stage differential amplifier is shown in Fig. 7. All transistors in circuit are identical and have infinity Early voltage, $V_{BE(on)}$ of 0.7 V, and current gain (β) of 50. V_{DC} in circuit is 5 V. (30%)
 - (a) Determine values of R_1 , R_2 , R_3 , and R_4 that could meet $R_{id} = 1$ k Ω (R_{id} is the differential-mode input resistance, defined as the ratio of differential input voltage ($v_{id} = v_{i1} v_{i2}$) to the input current i_b), $R_{od} = 150 \Omega$ (R_{od} is the differential-mode output resistance, defined as the ratio of differential input voltage ($v_{od} = v_{o1} v_{o2}$) to the input current i_o), $I_1R_1 = 3$ $V_{BE(on)}$, and $I_2R_2 = 2V_{BE(on)}$.
 - (b) Find the differential-mode voltage gain $A_d = \frac{v_{o1} v_{o2}}{v_{i1} v_{i2}}$.

編號: 41

國立成功大學 112 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0207,節次:1

第4頁,共4頁

(c) Find the Find the differential-mode voltage gain $A_c = \frac{v_{o1} + v_{o2}}{v_{i1} + v_{i2}}$.

- 10. Figure 8 shows a multiple stage amplifier. Q_1 in circuit has β = 100 and r_{π} = 1 k Ω . Q_2 in circuit has β = 100 and r_{π} = 0.5 k Ω . (10%)
 - (a) Determine the capacitors C_1 , C_2 , and C_3 in Fig. 8 which the lower 3dB frequency of circuit is 100 Hz.
 - (b) Find the overall voltage gain of the circuit in Fig. 8.

Fig. 8