國立成功大學

112學年度碩士班招生考試試題

編 號: 35

系 所:數學系應用數學

科 目: 線性代數

日期:0207

節 次:第1節

備 註:不可使用計算機

國立成功大學112學年度碩士班招生考試試題 編號 35

系 所: 數學系應用數學

考試科目:線性代數

考試日期:0207,節次:1

第/頁,共/頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

On this exam V is a finite dimensional vector space over the field \mathbb{F} , where either $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Also, \mathbb{F}^n denotes the vector space of n-tuples with n entries from \mathbb{F} , as usual. The vector space of all linear maps from V to itself is denoted $\mathcal{L}(V)$. T^* is the adjoint of the operator T and $\bar{\lambda}$ is the complex conjugate of the scalar λ .

1. (a) (12 points) Let

$$A = \left[\begin{array}{cccccc} 2 & -1 & 3 & -1 & 1 & -5 \\ -1 & 4 & 2 & 11 & -3 & 10 \\ 1 & 1 & 3 & 4 & 2 & -7 \end{array} \right]$$

Find bases for the null and column spaces of A.

- (b) Suppose A is a nilpotent matrix.
 - i. (7 points) Prove that I A is invertible. Find $(I A)^{-1}$.
 - ii. (3 points) Prove that I + A is invertible.
- 2. (10 points) Define a real vector space $V = \{p(x) \mid p(x) = ax^2 + bx + c, a, b, c \in \mathbb{R}\},\$ with inner product $\langle p,q\rangle=\int_0^1 p(x)q(x)\ dx$. Find an orthonormal basis for V.
- 3. (a) (12 points) Suppose $T \in \mathcal{L}(V)$. Prove that the zeros of the minimal polynomial of T are precisely the eigenvalues of T.
 - (b) Suppose $T \in \mathcal{L}(\mathbb{F}^4)$ is defined by $T(w_1, w_2, w_3, w_4) = (0, w_2 + w_4, w_3, w_4)$.
 - i. (8 points) Determine the minimal polynomial of T.
 - ii. (4 points) Determine the characteristic polynomial of T.
- 4. (10 points) Suppose $T \in \mathcal{L}(V)$ is normal and $v \in V$ is an eigenvector of T with eigenvalue λ . Prove that v is also an eigenvector of the adjoint T^* with eigenvalue $\bar{\lambda}$.
- 5. (14 points) Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that P is an orthogonal projection if and only if P is self-adjoint.
- 6. (a) (6 points) Suppose V is an inner product space and $T \in \mathcal{L}(V)$. Prove that if e_1, \ldots, e_n is an orthonormal basis of V, then

trace
$$(T^*T) = ||Te_1||^2 + \dots + ||Te_n||^2$$
.

Conclude that the right side of the equation above is independent of which orthonormal basis e_1, \ldots, e_n is chosen for V.

(b) (14 points) Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of T, repeated according to multiplicity. Suppose

$$\left[\begin{array}{ccc} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{array}\right]$$

is the matrix of T with respect to some orthonormal basis of V. Prove that

$$|\lambda_1|^2 + \dots + |\lambda_n|^2 \le \sum_{k=1}^n \sum_{j=1}^n |a_{j,k}|^2.$$