國立成功大學

112學年度碩士班招生考試試題

編 號: 170

系 所:電機工程學系

科 目:控制系統

日期:0206

節 次:第2節

備 註:不可使用計算機

國立成功大學 112 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:控制系統

第1頁,共1頁

編號: 170

考試日期:0206,節次:2

(25%)

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. For the system shown in Fig. 1, find the sensitivity of the steady-state error for changes in K_1 and in K_2 , when $K_1 = 200$ and $K_2 = 0.2$. Assume step inputs for both the input and the disturbance. (25%)

2. The system shown in Fig. 2 has $G_1(s) = \frac{1}{s(s+2)(s+4)}$. Use the Routh-Hurwitz criterion to find the

values of K_1 and K_2 for which the system oscillates at a frequency of 5 rad/sec.

Fig. 2

3. A system transfer function is given by $\frac{y(s)}{r(s)} = \frac{4}{s^3 + 3s^2 + 6s + 4}$ and the unit-step response is described by

$$y(t) = 1 + Ae^{-pt} + Be^{-\sigma t}\sin(\omega t - \theta)$$
. Please derive and determine A, p, B, σ, ω , and θ . (25%)

- 4. A system transfer function is given by $\frac{y(s)}{u(s)} = \frac{s}{s^2 + 7}$.
 - (a) Please derive A, B, and C and write a set of equations that describe this system in the control canonical form as $\dot{x} = Ax + Bu$ and y = Cx. (15%)
 - (b) Design a control law of the form, $u = -\begin{bmatrix} k_1 & k_2 \end{bmatrix} \mathbf{x}$, which will place the closed-loop poles at

$$s = -4 \pm j5. (10\%)$$