國立成功大學

112學年度碩士班招生考試試題

編 號: 239

系 所: 資訊管理研究所

科 目:資料結構

日 期: 0207

節 次:第3節

備 註:不可使用計算機

編號: 239

國立成功大學 112 學年度碩士班招生考試試題

系 所:資訊管理研究所

考試科目:資料結構

第1頁,共3頁

考試日期:0207, 節次:3

		* · * • • • • • • • • • • • • • • • • • • •		
	/- ==\	·	1-t-1-1 F-F	
A 4	——————————————————————————————————————	:本試題不可使用計算機。	請於答案卷(卡)作答,於本試題紙上作	- //
/•\ J.				
	-	· · · · · · · · · · · · · · · · · · ·		

Part A.

- I. Choose the alternative that <u>best</u> completes the statement or answers the question. 12%; each 3%
- 1. How many linked lists are used to represent a graph with 8 nodes and 10 edges, when using an edge list representation?
- (a) 8
- (b) 10
- (c) 18
- (d) 80
- (e) none of the above
- 2. What is the range of values computed by the hash function $Hash(X) = X \mod 1000$?
- (a) 0 to 1000
- (b) 1 to 1000
- (c) 0 to 999
- (d) 1 to 999
- (e) none of the above
- 3. Which of the following sorting algorithm has the same average and worst-case time bounds (big-O notation) as heapsort?
- (a) insertion sort
- (b) mergesort
- (c) quicksort
- (d) shellsort
- (e) none of the above
- 4. Which of the following does the binary heap implement?
- (a) binary search tree
- (b) priority queue
- (c) hash table
- (d) queue
- (e) stack

編號: 239

國立成功大學 112 學年度碩士班招生考試試題

系 所:資訊管理研究所

考試科目:資料結構

第2頁,共3頁

考試日期:0207, 節次:3

II. Short answer questions and discussion

- 5. Given a tree, T, its height is defined as the length of the longest root-to-leaf path in T.
- (1) [5%] What is the maximum number of nodes in a binary tree of height 8?
- (2) [5%] What is the minimum number of nodes in a binary tree of height 9?
- 6. [5%] The following numbers are inserted sequentially into a binary search tree: 5 2 4 3 8 1 7 9. What is the number in the deepest node?
- 7. Tom is planning a trip in Europe. He plans to visit n countries. Assuming there exist exactly K multiple direct flights between each country pair i & j, with different costs and flight time. Answer the following questions.
- (1) [4%] If we use a node to represent a country and a directed arc to represent a direct flight from one country to another (but not to itself). How many arcs will this graph contain?
- (2) [7%] Based on (1), please explain <u>how</u> (by the Adjacency matrix or the Adjacency list) you may store this graph. Also, explain <u>why</u> you choose one but not the other of the 2 data structures.
- (3) [7%] If Tom plans to visit all these n countries at minimum costs. Can this be done by a 1-ALL shortest path problem or by a Minimum-spanning tree? Please explain your answer.
- (4) [5%] If Tom plans to visit L other countries starting from France (one of the n countries) and then return to France with total costs no more than Q and total flight time no more than P. Can this be done in polynomial time if L < 7? Explain how and why.

編號: 239

國立成功大學 112 學年度碩士班招生考試試題

系 所:資訊管理研究所

考試科目:資料結構

考試日期:0207,節次:3

第3頁,共3頁

III. 8 · [20%] True or False, and EXPLAIN

Circle T(true) or F(false). If the statement is correct, briefly state why. If the statement is wrong, explain why or give a counterexample. Answers WITHOUT reasons will get at most 1 point.

- (a) [4%] If we have stored n random real numbers in a 1-D array. If these numbers are known to be uniformly distributed in [0, 1000]. To sort these n numbers in increasing order requires $\Omega(n \log n)$ time.
- (b) [4%] If we use a binary search tree (BST) to store $n \ge 3$ distinct integers, printing these n integers out and storing them by a min-heap takes $\omega(n \log n)$ time.
- (c) [4%] Given a directed acyclic graph containing negative arc weight, if we multiply each arc weight with "-1", we can use Dijkstra's algorithm to calculate a longest directed path from node s to node t.
- Let G be a simple digraph (no self-loops or parallel edges) of n nodes and m edges with positive and distinct edge weights.
- (d) [4%] If we want to answer the question of whether G contains a directed cycle that must pass arc (s,t) with length at most Q (a given constant), this cannot be done in polynomial time because there may exist exponentially many such kinds of cycles.
- (e) [4%] Suppose Tom stores n unsorted distinct real numbers by a Red-Black Tree, and Mary stores them by an 1-D array. Now Tom and Mary want to print out the median. Both of them would take O(n) time.
- IV. $9 \cdot [30\%]$ John is responsible for designing the layout of his factory, which is a $U \times V$ grid network containing UV squares (each square has a unit side length). In particular, the factory is a rectangle with horizontal length V units and vertical length U units. Now John wants to install n machines inside this factory, where machine i is a rectangle of v_i units horizontally and u_i units vertically (assuming each machine will not be rotated). Let the coordinates of the left-up, right-up, left-down, and right-down corners of this factory to be (0,0), (0,V), (U,0), and (U,V). Suppose the coordinate of the center for machine i is (x_i,y_i) , and we need to keep a safety distance of d units both horizontally and vertically between the "boundary" of any two machines.
- (a) [20%] Suppose John already has (x_i, y_i) for each machine i. Give a method to help John determine whether the given coordinates satisfy constraints:(i) all machines must be inside the factory, and (ii) all machines must keep a safety distance between each other. For each of the above (i)(ii) checks, you should explain how your methods work and their complexity.
- (b) [10%] Suppose John has a feasible center coordinate for each machine i, and installing a wire to connect machine i and j costs c_{ij} = c_{ji}. He wants to install wires between machines so that all machines are connected with minimum total costs. (i) Can this be done in polynomial time? If yes, explain how and why; otherwise, explain why not. (ii) answer the same questions in (i) if the final graph must be a cycle.